001     1046459
005     20260122125235.0
024 7 _ |a 10.1007/s10851-025-01267-5
|2 doi
024 7 _ |a 0924-9907
|2 ISSN
024 7 _ |a 1573-7683
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03812
|2 datacite_doi
024 7 _ |a WOS:001574657700001
|2 WOS
037 _ _ |a FZJ-2025-03812
041 _ _ |a English
082 _ _ |a 510
100 1 _ |a Kahra, Marvin
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Matrix-Valued LogSumExp Approximation for Colour Morphology
260 _ _ |a Dordrecht [u.a.]
|c 2025
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764239145_6908
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Mathematical morphology is a part of image processing that employs a moving window to modify pixel values through the application of specific operations. The supremum and infimum are pivotal concepts, yet defining them in a general sense for high-dimensional data such as colour is a challenging endeavour. As a result, a number of different approaches have been taken to try to find a solution, with certain compromises being made along the way. In this paper, we present an analysis of a novel approach that replaces the supremum within a morphological operation with the LogExp approximation of the maximum for matrix-valued colours. This approach has the advantage of extending the associativity of dilation from the one-dimensional to the higher-dimensional case. Furthermore, the minimality property is investigated and a relaxation specified to ensure that the approach is continuously dependent on the input data.
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Breuß, Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kleefeld, Andreas
|0 P:(DE-Juel1)169421
|b 2
|u fzj
700 1 _ |a Welk, Martin
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1007/s10851-025-01267-5
|g Vol. 67, no. 5, p. 52
|0 PERI:(DE-600)1479363-5
|n 5
|p 52
|t Journal of mathematical imaging and vision
|v 67
|y 2025
|x 0924-9907
856 4 _ |u https://juser.fz-juelich.de/record/1046459/files/s10851-025-01267-5.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046459
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Brandenburg University of Technology Cottbus-Senftenberg
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Brandenburg University of Technology Cottbus-Senftenberg
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169421
910 1 _ |a UMIT TIROL
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATH IMAGING VIS : 2022
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21