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Abstract
Mathematical morphology is a part of image processing that employs a moving window to modify pixel values through the
application of specific operations. The supremum and infimum are pivotal concepts, yet defining them in a general sense for
high-dimensional data such as colour is a challenging endeavour. As a result, a number of different approaches have been taken
to try to find a solution, with certain compromises being made along the way. In this paper, we present an analysis of a novel
approach that replaces the supremum within a morphological operation with the LogExp approximation of the maximum for
matrix-valued colours. This approach has the advantage of extending the associativity of dilation from the one-dimensional
to the higher-dimensional case. Furthermore, the minimality property is investigated and a relaxation specified to ensure that
the approach is continuously dependent on the input data.

Keywords Mathematical morphology · Colour image · Matrix-valued image · Positive definite matrix · Symmetric matrix ·
Supremum

1 Introduction

Mathematical morphology is a theory used to analyse spatial
structures in images. Over the decades, it has developed into
a very successful field of image processing, see, for exam-
ple, [1–3] for an overview.Morphological operators basically
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consist of twomain components. Thefirst of these is the struc-
turing element (SE), which is characterised by its shape, size
and position. These in turn can be divided into two types of
SEs, flat and non-flat cf. [4]. A flat SE basically defines a
neighbourhood of the central pixel where appropriate mor-
phological operations are performed, while a non-flat SE also
contains a mask with finite values that are used as additive
offsets. The SE is usually implemented as a window slid-
ing over the image. The second main component is used to
perform a comparison of valueswithin an SE. The basic oper-
ations in mathematical morphology are dilation and erosion,
where a pixel value is set to the maximum and minimum,
respectively, of the discrete image function within the SE.
Many morphological filtering procedures of practical inter-
est, such as opening, closing or top hats, can be formulated
by combining dilation and erosion operations. Since dilation
and erosion are dual operations, it is often sufficient to restrict
oneself to one of the two when constructing algorithms.

Let us also briefly extend this concept to colour mor-
phology, as it is the underlying concept for our further
considerations. As already mentioned, the most important
operation in morphology is to perform a comparison of the
tonal values or, in our case, the colour values within the SE
over certain sets of pixels in an image domain. For the simpler
application areas such as binary or grey value morphology,
one can act directly on complete lattices in order to obtain
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a total order of the colour values, see [3]. In the case of
colour morphology, this is no longer the case, as there is
no total order of the colour values. For this reason, corre-
sponding semi-orders and different basic structures are used,
cf. [5]. The first approach that could be used for this would
be to regard each colour channel of an image as an inde-
pendent image and to perform grey value morphology on
each of them. This approach has the serious disadvantage
that we lose the correlated information between the colour
channels, which could be used to further improve the fil-
tering results. The other approach, which is more popular,
uses a vector space structure in which each colour is con-
sidered a vector in an underlying colour space. In order to
compute a supremum or infimum, it is necessary to have an
order for the vector space. However, there are a plethora of
ordering approaches for colour morphology. For details of
the most commonly used approaches, we refer the reader to
the overviewprovided in [6].Wewill take the latter approach,
but use symmetric matrices instead of vectors. Since there is
also no total order for colour matrices either, we will order
the elements by means of a semi-order, namely the Loewner
order, see [7]. This means, though, that we need an addi-
tional function to select a minimum upper bound, namely
the supremum function.

To calculate two of the basic operations of colour mor-
phology, dilation and erosion, it is necessary to determine the
supremum or infimum. Because of the duality between these
two operations, it is common to consider only one of them.
Here we will concentrate on dilation and the construction of
the supremum. However, there are several approaches how to
choose the supremum of a set of symmetric matrices, based
on different norms. To give some examples, we mention here
the nuclear norm, the Frobenius norm and the spectral norm.
For a comparison of these norms we refer to the work by
Welk, Kleefeld and Breuß [8].

Here we want to consider another approach, namely the
approximation of the supremum by a so-called LogSum-
Exp approximation of Maslov [9]. This is an approximation
which has already given promising results in the work of
Kahra, Sridhar and Breuß [10] for greyscale images and for
colour images in [11] in conjunctionwith a fast Fourier trans-
form. However, the latter only represents a one-dimensional
channel-wise approach to colour morphology. Another con-
nection worth mentioning is the work [12] of Burgeth, Welk,
Feddern and Weickert, where root and power functions were
used for symmetric positive semi-definite matrices instead of
logarithm and exponential function. However, our approach
does not require a positive semi-definite matrix, but works
with any colour matrix, and preserves the so-called transitiv-
ity of greyscale morphology.

This paper will be the next step from [13] for transferring
the LogSumExp approach to colour morphology with tonal
vectors/matrices. The goal is to present a clear characterisa-

tion of this approach for tonal value matrices to close the gap
in the reasoning of [13] and to extend it with regard to certain
properties. In this way, we will end up with a dilation oper-
ator that, with a few minor compromises, combines many of
the advantageous properties of the other multidimensional
approaches while preserving the associativity of the dila-
tion, which, as far as we know, is not the case with the other
multidimensional approaches. In addition, we will present a
relaxed formulation of the operator, which addresses one of
the primary limitations of the operator.

2 General Definitions

To make this paper self-contained, we want to use this
section to clarify some basic definitions and terminology,
using our previous paper [13] as a guide. This is divided into
two subsections, one for the morphological terms and one
for the terms related to the Loewner order.

We will start with the morphological concepts of dila-
tion/erosion for greyscale images and then extend this to
colour images. In particular, we will discuss how colours
can be represented and which algebraic structures we will
consider for this paper and describe the one we have chosen
in more detail.

In the second subsection, we look at why we need such an
order and why we have chosen it. We show what we mean
by a minimiser of a convex set with respect to the Loewner
order and which properties it must fulfil. This will give us a
general explanation for a matrix supremum. Finally, we will
give a brief overview of how different norms lead to different
matrix suprema.

2.1 Colour Morphology

We begin with a two-dimensional, discrete image domain
� ⊆ Z

2 and a single-channel greyscale image, which is
described by a discrete function f : � → [0, 255]. In the
case of non-flat morphology, the structuring element (SE)
can be represented as a function b : Z2 → R ∪ {−∞} with

b(x) :=
{

β(x), x ∈ B0,

−∞, otherwise,
B0 ⊂ Z

2, (1)

where β is itself a small greyscale image that should have
the same scaling for the greyscale values as the input image.
It defines the height of the SE or in other words which pixel
will be “prioritised” by the filtering. B0 is a set centred at
the origin. However, the origin of the SE needs not always
to be at its centre. It determines the shape and size of the
SE, as it specifies which elements are to be compared with
each other. Frequently used shapes for this are squares, discs,
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Fig. 1 Application of different morphological operators on a 256× 256 greyscale image with a 5× 5 SE. From left to right: Downscaled original
image from TAMPERE17 noise-free image database [14], dilation, erosion, opening and closing

diamonds, hexagons and crosses, see [15, 16]. In the case of
a flat filter (flat morphology), it is simply the special case
β(x) = 0. Two of the most elementary operations of mathe-
matical morphology are dilation

( f ⊕ b)(x) := max
u∈Z2

{ f (x − u) + b(u)}, x ∈ �, (2)

and erosion

( f 	 b)(x) := min
u∈Z2

{ f (x + u) − b(u)}, x ∈ �, (3)

see Figure 1 for an example. In particular, these two oper-
ations are dual in the following sense with respect to
complementation. Let the range of the greyscale values of f
be given by the interval [ fmin, fmax] ⊆ [0, 255], where fmin

is the lower limit and fmax the upper limit of the greyscale
values of f . We define the complementary image f c as

f c(x) := fmax − f (x) + fmin, x ∈ �. (4)

Then one has(
f c ⊕ b̆

)c
(x)

= fmax − max
u∈Z2

{
fmax − f (x − u) + b̆(u) + fmin

}
+ fmin

= fmax − fmax − max
u∈Z2

{
− f (x − u) + b̆(u)

}
− fmin + fmin

= min
u∈Z2

{
f (x − u) − b̆(u)

}
= min

u∈Z2
{ f (x + u) − b(u)} = ( f 	 b)(x), x ∈ �, (5)

where b̆(x) = b(−x). This shows the duality between dila-
tion and erosion.

However, with these two operations, many other opera-
tions can be defined that are of great interest in practice, e.g.
opening f ◦b = ( f 	b)⊕b and closing f •b = ( f ⊕b)	b,
see Fig. 1. In general, an opening will result in the deletion
of minor, protruding components of an object. For example,

this can be observed by the first column on the left side of
the entrance in Fig. 1. The closing operation will fill small
holes or thin intruding parts of the object. This may entail
the destruction of smaller dark areas, such as the shadows of
the columns on the outermost left side or the thin flat win-
dow illustrated in Fig. 1. These filtering operations can be
employed in conjunctionwith varying sizes of the SE to com-
pute size distributions in binary images, see [1] for further
information about granulometry and related applications.

We turn now to our actual area of interest, namely colour
morphology. This is similar to the greyscale morphology
already shown, with the difference that we no longer have
just one channel, but three. There aremany useful formats for
expressing this, see [17]. A classic approach in this sense is
the channel-by-channel processing of an image with the red–
green–blue (RGB) colour model, see, for example, [11] for
a recent example of channel-wise scheme implementation.
However, instead of RGB vectors, we will use symmetric
2× 2 matrices.

For this we assume that the colour values are already nor-
malised to the interval [0, 1] for the corresponding channels.
First, we transfer this vector into the hue–chroma–luminance
(HCL) colour space by means of M = max{R,G, B},
m = min{R,G, B}, C = M − m, L = 1

2 (M + m) and

H =

⎧⎪⎨
⎪⎩

G−B
6C mod 1, if M = R,
B−R
6C + 1

3 mod 1, if M = G,
R−G
6C + 2

3 mod 1, if M = B.

Subsequently, the luminance L is replaced with the modi-
fied luminance L̃ = 2L − 1 and the quantities C , 2πH and
L̃ are regarded as radial, angular and axial coordinates of a
cylindrical coordinate system, respectively. Since the trans-
formation shownheremaps each colour from theRGBcolour
space one-to-one to a colour in the HCL bi-cone, see Figure
2, this represents a bijection onto the bi-cone, which in turn is
interpreted with Cartesian coordinates by x = C cos(2πH),
y = C sin(2πH) and z = L̃ . Finally, we map these Carte-
sian coordinates onto a symmetric matrix in the following
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manner:

A :=
√
2

2

(
z − y x
x z + y

)
,

where the complete transformation process is a bijective
mapping, see [7].

2.2 The Loewner Order and the Decision of a
Minimiser

In the absence of a conventional ordering of the elements in
eitherR3 orR2×2, it becomes necessary to define the relative
positions of two elementswith respect to one another. In order
to respond to this query, it is necessary to utilise amore lenient
interpretation of the ordering relation, namely that of a semi-
order. For this reason, we resort to the Loewner order and the
colour morphological processing based on this, which was
already presented in the work [18] by Burgeth and Kleefeld.

Definition 1 We define the set of symmetric matrices as

Sym(n) := {A = (ai j )i, j=1,...,n ∈ R
n×n :

ai j = a ji ∀i, j = 1, . . . , n}, n ∈ N,
(6)

and the set of positive semi-definite symmetric matrices as

Sym+(n) := {A ∈ Sym(n) : xTAx ≥ 0 ∀x ∈ R
n

with x �= 0}, n ∈ N.
(7)

One can see that Sym+(n) is a convex cone, cf. [19]. Thus,
this cone induces a partial order in the space of symmetric
matrices, which we define as follows.

Definition 2 Let A, B ∈ Sym(n), n ∈ N. We define the
Loewner semi-order ≥L as follows

A ≥L B :⇐⇒ A− B ∈ Sym+(n). (8)

One of the benefits of employing the Loewner order in
conjunction with the HCL bi-cone is that the Cartesian coor-
dinates of a given bi-cone vector can be utilised to represent
each colour matrix X as a cone of a specified height within
the bi-cone. In this representation, the radius of the cone of X
is given by 1√

2
trX . Therefore, a colour is larger than another

colour in the Loewner sense if the cone of the larger colour
contains the cone of the smaller colour as a subset. Since the
radius is equal to the height of the resulting cones, we only
need to find a larger base circle for the corresponding cones,
see Figure 3 for a visualising example. For more details, we
refer to the paper [18] by Burgeth and Kleefeld.

The problem with this semi-order is that it is not a lat-
tice order [20], and therefore, it is not possible to find a
unique maximum or minimum. To get around this problem,

one needs another property to select a uniquely determined
maximum from the convex set of symmetric matrices U(X )

that are upper bounds in the Loewner sense for the multi-set
X = {X1, X2, . . . , Xn} of given symmetric real 2 × 2 data
matrices with

U(X ) := {Y ∈ Sym(2) : X ≤L Y ∀X ∈ X } ,

see [8] for this. In particular, U(X ) is a convex set, since for
any A, B ∈ U(X ) one has

αA+ (1− α)B ≥L αX + (1− α)X = X

∀X ∈ X , α ∈ [0, 1]

and the linear combination of two symmetricmatrices always
result in a symmetric matrix. For representation of the previ-
ously mentioned property, we use the function ϕ : U(X ) →
R, which should be convex on the set U(X ) and Loewner-
monotone, i.e.

ϕ(A) ≤ ϕ(B) ⇐⇒ A ≤L B.

To clarify this terminology of convexity, we introduce the
following definition.

Definition 3 Let V1, V2 be two real-valued vector spaces,
M ⊂ V1 a convex set and K ⊂ V2 an order cone, i.e.
K := {x ∈ V2 : x ≥ 0} on the ordered vector space (V2,≥).
A function f : M → V2 is called convex on the set M if
and only if

α f (x) + (1− α) f ( y) − f (αx + (1− α) y) ∈ K

∀x, y ∈ M, α ∈ [0, 1]. (9)

Furthermore, ϕ should have a unique minimiser in U(X );
thus, we can define the ϕ-supremum ofX as said minimiser:

Supϕ(X ) := argmin
Y∈U(X )

ϕ(Y). (10)

The matrix supremum introduced in the paper [12] is based
on the calculation of the trace and is therefore also called
trace supremum. That is, one has ϕ(Y) = trY and we get as
supremum:

Suptr(X ) := argmin
Y∈U(X )

trY .

Based on the corresponding norms, the Frobenius supremum

Sup2(X ) := argmin
Y∈U(X )

∑
X∈X

||Y − X||2
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Fig. 3 Visualisation of the Loewner ordering in theHCLbi-cone for the
three colour matrices X i , i = 1, 2, 3, with X3 ≥L X1 and X3 ≥L X2.
From left to right: The cone representation of a yellow colour X1 and

a cyan–blue colour X2, the base circles of X1 and X2 with a third base
circle of a green colour X3 that encompasses both of them, the cone
representation of all three colours

and the spectral supremum

Sup∞(X ) := argmin
Y∈U(X )

∑
X∈X

|λ1(Y − X)|,

where λ1(A) denotes the largest eigenvalue of A, were
derived in [8]. At this point, it should be noted that, in the
case of positive semi-definite matrices, all three norms are
Schatten norms || · ||p for p ∈ {1, 2,∞}.

In contrast to the above approaches utilising norms, which
compare matrices that are upper bounds, we will adopt a
more direct approach. To accomplish this, we will employ an
approximation of the maximum function by Maslov [9] as a
matrix-valued function to directly calculate a matrix that acts
as an upper bound. The subsequent section aims to present a
detailed characterisation of this approach.

3 Characterisation of the
Log-Exp-Supremum

In this section, we will construct a characterisation for the
log-exp-supremum that depends solely on the input data,
albeit not continuously. This characterisation is based on the
spectral decomposition of the matrices under consideration
and some properties of symmetric 2 × 2 matrices and the
Rayleigh product. Given that this characterisation is based
on spectral decomposition, this section will be divided into
three parts. The first part will consider the case where there is
a unique largest eigenvalue among the input data. The second
part will consider the case where there is no unique largest
eigenvalue. The third and final part will consider a general
case that includes the other two cases and some associated
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properties. In particular, the log-exp-supremum is transitive,
a property that will be demonstrated at the conclusion of this
section.

Definition 4 We define for a multi-set X = {X1, . . . , Xn},
n ∈ N, of symmetric real 2 × 2 matrices the log-exp-
supremum (LES) as

S := SupLE(X ) := lim
m→∞

(
1

m
log

n∑
i=1

exp(mX i )

)
. (11)

Remark 1 The log-exp-infimum follows by duality:

InfLE(X ) := − lim
m→∞

(
1

m
log

n∑
i=1

exp(−mX i )

)
. (12)

Furthermore, we explain the spectral decomposition of X i

by

X i = λiuiuTi + μiviv
T
i , λi ≥ μi , 〈ui , vi 〉 = 0,

|ui | = 1 = |vi |, ui = (ci , si )
T, vi = (−si , ci )

T,

ci = cos(ϕi ), si = sin(ϕi ), ϕi ∈
[
−π

2
,
π

2

]
,

i = 1, . . . , n,

(13)

where λi , μi ∈ R are the eigenvalues of X i and ui ⊥ vi are
the normalised eigenvectors to the corresponding eigenval-
ues.

3.1 LES for a Unique Largest Eigenvalue

We will now assume that

λ1 is the unique largest eigenvalue among

all eigenvalues of X (14)

and further that without loss of generality

the eigenvectors of X1 have ϕ1 = 0, (15)

i.e. they are axis-aligned and fulfil u1 = e1 := (1, 0)T and
v1 = e2 := (0, 1)T. Using these assumptions, we calculate
the matrix exponential according to the general application
of functions to diagonalisable matrices, see [21]:

exp(mX i )

= exp

(
mλi

(
c2i ci si
ci si s2i

)

+ mμi

(
s2i −ci si

−ci si c2i

))

=
(

c2i e
mλi + s2i e

mμi ci si
(
emλi − emμi

)
ci si

(
emλi − emμi

)
s2i e

mλi + c2i e
mμi

)

and the summation over all i = 1, . . . , n leads to

Em :=
n∑

i=1

exp(mX i ) =
(
em11 em12

em21 em22

)

with

em11 = emλ1 +
n∑

i=2

(
c2i e

mλi + s2i e
mμi
)

,

em12 =
n∑

i=2

ci si
(
emλi − emμi

) = em21 and

em22 = emμ1 +
n∑

i=2

(
s2i e

mλi + c2i e
mμi
)

.

Next, we determine the major eigenvector for this matrix
when m tends to infinity.

Lemma 1 Let the conditions (14) and (15) be fulfilled accord-
ing to (13). Then u1 = (1, 0)T represents the major
eigenvector of Em for m → ∞.

Proof We declare the Rayleigh product as

REm (w) := 〈w, Emw〉, w ∈ R
2,

and consider it for vectors

wε = 1√
1+ ε2

(
1
ε

)
, |ε| � 1,

which vary in the second component with ε around u1. We
determine

REm (wε)

= 1

1+ ε2

(
emλ1 + ε2emμ1

+
n∑

i=2

(
(ci + εsi )

2emλi + (si − εci )
2emμi

))

=: 1

1+ ε2

(
emλ1 + hm(ε)

)
.

(16)

If m → ∞, we observe

lim
m→∞

hm(ε)

emλ1
= 0, (17)

because we assumed that λ1 is the unique largest eigenvalue
and |ε| � 1. By considering

REm (w0) = emλ1 +
n∑

i=2

(
c2i e

mλi + s2i e
mμi
)

,
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we obtain

lim
m→∞

REm (wε)

REm (w0)
= lim

m→∞
emλ1 + hm(ε)

(1+ ε2)
(
emλ1 + hm(0)

)
= lim

m→∞

(
1

1+ ε2

+ ε2emμ1 +∑n
i=2

(
(2εci si + ε2s2i )e

mλi
)

(1+ ε2)
(
emλ1 + hm(0)

)
+
∑n

i=2

(
(−2εci si + ε2c2i )e

mμi
)

(1+ ε2)
(
emλ1 + hm(0)

) )

=: 1

1+ ε2
lim

m→∞

(
1+ f (1)

m (ε)

f (2)
m

)

=: 1

1+ ε2
lim

m→∞
(
1+ fm(ε)

)
.

We know that fm(ε) ≥ 0 for all m > 0, since λi ≥ μi for
i = 2, . . . , n. Furthermore, we set

gm(ε) :=
n∑

i=2

(
(ci + εsi )

2emλi + (si − εci )
2emμi

)

and estimate f (1)
m (ε) ≤ ε2emμ1 + gm(ε). We therefore have

the following estimation:

0 ≤ lim
m→∞ fm(ε) = lim

m→∞
f (1)
m (ε)

f (2)
m

≤ lim
m→∞

ε2emμ1 + gm(ε)

f (2)
m

(17)= 0,

which leads to

lim
m→∞

REm (wε)

REm (w0)
= 1

1+ ε2
(1+ 0) = 1

1+ ε2
.

This means that the function lim
m→∞

REm (wε)

REm (w0)
has a local max-

imum at ε = 0 and thus concludes the proof. ��
To interpret this lemma, we declare the major eigenvector

of Em as ūm . Then we obtain from the lemma the equation
lim
m→0

ūm = u1, and since the eigenvectors of 1
m log Em are

the same as those of Em , it also follows that u1 is the major
eigenvector of S. Since all considered matrices are 2 × 2
matrices, we can deduce the second normalised eigenvector
of S as the vector that is orthogonal to the first eigenvector
u1 = (1, 0)T, namely v1 = (0, 1)T. As the next step, we will
determine the eigenvalue corresponding to u1.

Lemma 2 Let the conditions of Lemma1be fulfilled. Then the
eigenvector u1 of S according to (11) has the corresponding
eigenvalue λ1.

Proof Since the largest eigenvalue of Em is just expressed
by the value of the Rayleigh product at the point where it
takes its maximum, i.e. at wε, as we have established in the
proof of Lemma 2, we obtain as major eigenvalue (16). This
means that the major eigenvalue of 1

m log Em is

1

m
log REm (wε) = 1

m
log

[
1

1+ ε2

(
emλ1 + hm(ε)

)]

= 1

m
log

[
emλ1

1+ ε2

(
1+ hm(ε) e−mλ1

)]

= 1

m
log
(
1+ hm(ε) e−mλ1︸ ︷︷ ︸

→0 (m→∞)

)
︸ ︷︷ ︸

→0 (m→∞)

− 1

m
log(1+ ε2)︸ ︷︷ ︸
→0 (m→∞)

+ 1

m
log emλ1 ,

where the second term in the first log function vanish in the
limit becauseμ1, λi , μi for i = 2, . . . , n are smaller than λ1,
see (17). Thus, the major eigenvalue of S is just

lim
m→∞

(
1

m
log REm (wε)

)
= lim

m→∞

(
1

m
log emλ1

)
= λ1.

��
The final step in the characterisation of S is to calculate

the second eigenvalue corresponding to v1, but for this we
need a refinement of our calculations in the proof of Lemma
1. To achieve this, we establish the following lemma:

Lemma 3 Let the conditions of Lemma 1 be fulfilled and
additionally ε(m) be the value of ε for which vm = wε

holds for every m > 0. Then lim
m→∞ ε(m) = 0 with ε(m) ∼

em(λ−λ1), where λ = max(μ1, λ2, . . . , λn).

Proof In the proof of Lemma 1, we have already seen that
ε → 0 for m → ∞ and that the Rayleigh product fulfils

R(ε) := REm (wε) = 〈wε, Emwε〉 ∈ C∞(R).

Since the critical point is at ε → 0, we want to approximate
this point by a Taylor approximation of order two:

T2R(ε, 0) = R(0) + R′(0)ε + 1

2
R′′(0)ε2. (18)

For this, we determine

R(0) = emλ1 +
n∑

i=2

(
c2i e

mλi + s2i e
mμi
)

,

R′(ε) = − 2ε

(1+ ε2)2

(
R(ε)(1+ ε2)

)
+ 1

1+ ε2
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(
2εemμ1 +

n∑
i=2

((
2si ci + 2εs2i

)
emλi

+ (− 2si ci + 2εc2i
)
emμi

))

= − 2ε

1+ ε2
R(ε) + 2ε

1+ ε2
emμ1

+
n∑

i=2

2(ci + εsi )si
1+ ε2

emλi

+
n∑

i=2

2(−si + εci )ci
1+ ε2

emμi ,

R′(0) =
n∑

i=2

2ci sie
mλi −

n∑
i=2

2si cie
mμi

= 2
n∑

i=2

ci si
(
emλi − emμi

)
,

R′′(ε) = −2(1+ ε2) + 4ε2

(1+ ε2)2
R(ε) − 2ε

1+ ε2
R′(ε)

+ −2(1+ ε2) + 4ε2

(1+ ε2)2
emμ1

+
n∑

i=2

2s2i (1+ ε2) − 4ε(ci + εsi )si
(1+ ε2)2

emλi

+
n∑

i=2

2c2i (1+ ε2) + 4ε(si − εci )ci
(1+ ε2)2

emμi

= −2(1− ε2)

(1+ ε2)2
R(ε) − 2ε

1+ ε2
R′(ε)

+ 2(1− ε2)

(1+ ε2)2
emμ1

+
n∑

i=2

2(1− ε2)s2i − 4εci si
(1+ ε2)2

emλi

+
n∑

i=2

2(1− ε2)c2i + 4εci si
(1+ ε2)2

emμi ,

R′′(0) = −2R(0) + 2emμ1 +
n∑

i=2

2s2i e
mλi

+
n∑

i=2

2c2i e
mμi

= −2emλ1 − 2
n∑

i=2

(
c2i e

mλi + s2i e
mμi
)

+ 2emμ1 + 2
n∑

i=2

(
s2i e

mλi + c2i e
mμi
)

= −2emλ1 + 2emμ1 − 2
n∑

i=2

(
c2i − s2i

)
emλi

− 2
n∑

i=2

(
s2i − c2i

)
emμi

and by setting λ := max(μ1, λ2, . . . , λn), we obtain

R(0) = emλ1

(
1+

n∑
i=2

(
c2i e

m(λi−λ1)

+ s2i e
m(μi−λ1)

))

= emλ1
(
1+O

(
em(λ−λ1)

))
,

R′(0) = 	
(
emλ
)
,

R′′(0) = −2emλ1

(
1− em(μ1−λ1)

+
n∑

i=2

(
c2i − s2i

)
em(λi−λ1)

+
n∑

i=2

(
s2i − c2i

)
em(μi−λ1)

)

= −2emλ1
(
1+O

(
em(λ−λ1)

))
.

In this context, the symbols O and 	 represent the corre-
sponding Landau symbols. The term O( · ) symbolises an
upper bound for the asymptotic order, while the term 	( · )
denotes the exact asymptotic order. We will now determine
the maximum of (18) by means of differentiation:

R′(ε) = d

dε

(
T2R(ε, 0) +O

(
ε3
) )

= R′(0) + R′′(0)ε + 3O
(
ε2
) != 0

⇐⇒ ε = − R′(0) + 3O (ε2)
R′′(0)

= − 	
(
emλ
)+ 3O (ε2)

−2emλ1
(
1+O (em(λ−λ1)

))
⇐⇒ ε = 1

2	
(
em(λ1−λ)

) (
1+O (em(λ−λ1)

))
+ 3O (ε2)

2emλ1
(
1+O (em(λ−λ1)

))
⇐⇒ ε = 1

	
(
em(λ1−λ)

)+O(1)

+ 3O (ε2)
2emλ1

(
1+O (e−m(λ1−λ)

)) .
Since we can add a constant value to all eigenvalues and
subtract it again later when we have formed the LES, we
can assume without loss of generality that λ1 = 1. If we let
m → ∞, then the first fraction will converge to zero and the
second fraction will diverge in the denominator to infinity,
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because λ1 > λ. This means, we have ε → 0 for m → ∞.
Together with R′′(0) < 0 it follows that ε → 0 represents a
maximum of R(ε), which concludes this proof. ��

With this enhancement of our previous calculation of
Lemma 1, we are in the position to determine the second
eigenvalue that is needed for the characterisation of S. To
this end, we note the next lemma.

Lemma 4 Let the conditions of Lemma 3 be fulfilled. Then,
the eigenvalue of S belonging to the eigenvector v1 is the
largest eigenvalue of any of the matrices X i , i = 1, . . . , n,
whose eigenvector is not aligned with u1.

Proof 1.) Analogous to the proof of Lemma 1, we start with
the Rayleigh product of Em , but with an eigenvector that
is perpendicular to our first “test eigenvector” wε, namely
wε = w⊥

ε = 1√
1+ε2

(−ε, 1)T:

R(ε) = REm (wε) = 〈wε, Emwε〉

= ε2emλ1 + emμ1

1+ ε2

+
n∑

i=2

(si − εci )2emλi + (ci + εsi )2 emμi

1+ ε2
.

2.) Let us first assume that the second largest eigenvalue is
λ2 and s2 �= 0, so that the eigenvector u2 is not aligned with
the first eigenvector u1. Then we can rewrite this equation as

R(ε) = emλ2

1+ ε2

((
s2 − εc2

)2 + ε2em(λ1−λ2)

+ em(μ1−λ2) + (c2 + εs2
)2em(μ2−λ2)

+
n∑

i=3

((
si − εci

)2em(λi−λ2)

+ (ci + εsi
)2em(μi−λ2)

))
.

If we only look at the terms in the big brackets, we find
that only

(
s2 − εc2

)2 is constant with respect to m, while all
the other terms, with the exception of ε2em(λ1−λ2), involve
exponential functions with negative multiples of m, which
will approach zero for m → ∞. We conclude from Lemma
3 that

ε ∼ em(λ2−λ1) ⇐⇒ ε−1 ∼ em(λ1−λ2)

⇐⇒ ε2em(λ1−λ2) ∼ ε ∼ em(λ2−λ1)

and we also know that ε → 0 for m → ∞. So will
ε2em(λ1−λ2) → 0 for m → ∞. The remaining terms we

consider are

R(ε) = emλ2

1+ ε2

((
s2 − εc2

)2
+O(em(λ2−λ1) + em(μ−λ2)

))
,

(19)

where μ is the next largest eigenvalue after λ2. From there,
we calculate

1

m
log R(ε)

= λ2 − 1

m
log(1+ ε2) + 1

m
log
((
s2 − εc2

)2
+O(em(λ2−λ1) + em(μ−λ2)

))

= λ2 − log(1+ ε2)

m
+ log

(
(s2 − εc2)2

)
m

+
log
(
1+O (em(λ2−λ1) + em(μ−λ2)

) )
m

and for m → ∞ we obtain that 1
m log R(ε) → λ2, since ε

goes exponentially to 0 for m → ∞. This proves this case.

3.) Let us now assume that μ1 is the second largest eigen-
value. In this case, the results of Lemma 3 would be obtained
with λ = μ1, and the same procedure as that employed in
the current proof would be followed, but with the exclusion
of the μ1 term in place of the λ2 term. Thereby, we would
achieve

R(ε) = emμ1

1+ ε2

(
1+O(em(μ1−λ1) + em(μ−μ1)

))

for the leading terms in (19), where μ is the next largest
eigenvalue after μ1. The rest is done analogously.

4.) Now we assume that λ2 has the same eigenvector as λ1.
Then it follows that s2 = 0, and therefore,

(
s2 − εc2

)2 → 0
for m → ∞ in equation (19). Because of that we would
extract the next smaller eigenvalue and repeat the above cal-
culation until we find an eigenvalue whose eigenvector is not
u1. Then we would do the same proof with the term of this
eigenvalue instead the λ2 term.

5.) The final case would be that the second largest eigenvalue
λ2 is not unique. This would result in further terms like

(
s2−

εc2
)2 in (19) for the other eigenvalues equal to λ2. Since

these terms remain O(1), they will not change the result of
the proof. ��

We summarise our previous findings on our first theorem:

Theorem 1 Let X = {X1, . . . , Xn}, n ∈ N, be a multi-set of
symmetric real 2 × 2 matrices and λ1 be the unique largest
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eigenvalue of all matrices of X with the corresponding nor-
malised eigenvector u1. Then the log-exp-supremum of X
has the representation

S := lim
m→∞

(
1

m
log

n∑
i=1

exp(mX i )

)

= λ1u1uT1 + μ∗v1vT1 ,

(20)

where μ∗ is the next largest eigenvalue among all matrices
of X whose normalised eigenvector v∗ is not aligned with
the eigenvector u1 and v1 is the normalised eigenvector per-
pendicular to u1.

Proof A rotationmatrix R−ϕ1 is employed to rotate all eigen-
vectors inX ,with the rotation angle represented by−ϕ1. This
results in the transformation of X1 into a diagonal matrix
with diagonal entries λ1 and μ1. Thereby, assumption (15)
is fulfilled and we can apply Lemma 1–4 to the rotated input
matrices X−ϕ1 . For the LES, we get

S−ϕ1 := SupLE(X−ϕ1) = λ1e1eT1 + μ∗e2eT2 ,

where μ∗ is the next largest eigenvalue among all matrices
of X whose normalised eigenvector v∗ is not aligned with
the eigenvector e1 = (1, 0)T, and e2 = (0, 1)T. We achieve
the LES of the original X by rotating all of the eigenvectors
back with Rϕ1 :

S = Rϕ1S−ϕ1R
T
ϕ1

= Rϕ1

(
λ1e1eT1 + μ∗e2eT2

)
RT

ϕ1

= λ1(Rϕ1e1)
(
Rϕ1e1

)T + μ∗(Rϕ1e2)
(
Rϕ1e2

)T
= λ1u1uT1 + μ∗v1vT1 .

��
Before we look at the case where the largest eigenvalue is
not unique, let us calculate a small example with numerical
values for better understanding.

Example 1 We consider as RGB colours blue C1 = (0, 0, 1),
a medium dark brown C2 =

( 3
5 ,

2
5 ,

1
5

)
and a shade of blue–

magenta C3 =
(
1
3 ,

1
3 ,

5
6

)
and calculate the LES for them.

To do this, we first convert the RGB colours into symmetric
matrices as described in Section 2.1:

X1 = 1

2
√
2

(√
3 −1

−1 −√
3

)

≈
(

0.6124 −0.3535
−0.3535 −0.6124

)
,

X2 = 1

5
√
2

(−2
√
3√

3 0

)

≈
(−0.2828 0.2450

0.2450 0

)
and

X3 = 1

12
√
2

(
2+ 3

√
3 −3

−3 2− 3
√
3

)

≈
(

0.4240 −0.1768
−0.1768 −0.1883

)
.

Then, we form the spectral decomposition (13) with the
eigenvalues λi , μi and eigenvectors ui , vi for i = 1, 2, 3:

λ1 = 1√
2
≈ 0.7071, μ1 = −λ1,

u1 = 1√
8+ 4

√
3

(−2−√
3

1

)
≈
(−0.9659

0.2588

)
,

v1 = 1√
8− 4

√
3

(
2−√

3
1

)
≈
(−0.2588
−0.9659

)
,

λ2 = 1

5
√
2
≈ 0.1414, μ2 = − 3

5
√
2
≈ −0.4243,

u2 = 1

2

(
1√
3

)
≈
(
0.5000
0.8660

)
,

v2 = 1

2

(−√
3

1

)
≈
(−0.8660

0.5000

)
and

λ3 = 2

3
√
2
≈ 0.4714, μ3 = − 1

3
√
2
≈ −0.2357,

u3 = 1√
8+ 4

√
3

(−2−√
3

1

)
≈
(−0.9659

0.2588

)
,

v3 = 1√
8− 4

√
3

(
2−√

3
1

)
≈
(
0.2588
0.9659

)
.

The largest eigenvalue of this is λ1 and it is also unique.
According to Theorem 1, we take as eigenvectors for S the
vectors u1 and v1. The second largest eigenvalue is λ3, but
u3 = u1, so we do not consider this eigenvalue. Therefore,
the next largest eigenvalue is λ2, and since it has a differ-
ent eigenvector direction than λ1, we select it as the second
eigenvalue for S. In conclusion, we thus obtain for the LES:

S = λ1u1uT1 + λ2v1v
T
1

= 1

5
√
2

(
3+√

3 −1
−1 3−√

3

)

≈
(

0.6692 −0.1414
−0.1414 0.1793

)
,

which represents in the RGB space a medium light shade of
blue–magenta colour:

( 3
5 ,

3
5 , 1
)
(Fig. 4).
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Fig. 4 Dilation of an 90× 90
image based on the colours of
example 1 with a centred 1× 41
SE using the LES. From left to
right: original image and
dilated image

3.2 LES for Non-unique Largest Eigenvalues

Until now, we have assumed that the largest eigenvalue λ1 is
unique, butwe nowwant to showwhatwe getwhen this is not
the case. To do this, we first show that the largest eigenvalue
of S cannot be greater than λ1:

Lemma 5 Let S be defined as in (11) and condition (15)
be fulfilled according to (13). Furthermore, let X1 has the
largest not necessarily unique eigenvalue λ1 of all matrices
ofX . Then the largest eigenvalue of S cannot be greater than
λ1.

Proof We have already seen that the largest eigenvalue of S
arises from the Rayleigh product R(ε), |ε| � 1, which can
be estimated as follows:

R(ε) = 1

1+ ε2

(
emλ1 + ε2emμ1

+
n∑

i=2

(
(ci + εsi )

2emλi + (si − εci )
2emμi

))

≤ 1

1+ ε2

(
emλ1 + ε2emλ1

+
n∑

i=2

(
(ci + εsi )

2emλ1 + (si − εci )
2emλ1

))

= emλ1

1+ ε2

(
1+ ε2 +

n∑
i=2

(
(ci + εsi )

2

+ (si − εci )
2))

= emλ1

1+ ε2

(
1+ ε2 +

n∑
i=2

(
c2i + 2εci si + ε2s2i

+ s2i − 2εci si + ε2c2i
))

= emλ1

1+ ε2

(
1+ ε2 +

n∑
i=2

(
1+ ε2

))

= emλ1

(
1+

n∑
i=2

1

)
= nemλ1 .

Thus, the largest eigenvalue of S can be approximated with

lim
m→∞

1

m
log R(ε) ≤ lim

m→∞
1

m
log
(
nemλ1

)
= lim

m→∞
1

m

(
log
(
emλ1

)+ log n
)

= lim
m→∞

(
λ1 + log n

m

)
= λ1.

��
In a similar way, one can also show that S is indeed an

upper bound for the X i , i = 1, . . . , n. To do this, we prove
the following lemma:

Lemma 6 The LES S according to (11) is an upper bound in
the Loewner sense for the given matrices X .

Proof Apparently one has

n∑
i=1

exp(mX i ) ≥L exp(mX j ) ∀ j ∈ {1, . . . , n},

which in combination with the fact that the logarithm is
an operator-monotone function [22], i.e. A ≤L B �⇒
log A ≤L log B for symmetric positive definite matrices
A, B, results in S ≥L X j for all j ∈ {1, . . . , n}. ��

We now continue our considerations regarding the other
largest eigenvalue. If there is a second eigenvalue which is
equal to λ1, it can then be either μ1 or one of the λ j , since
λ j ≥ μ j . If itwereμ1, then X1 would have the representation
λ1 I and the only matrix with equally aligned eigenvectors
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that would be greater than or equal to λ1 I in the Loewner
sense without having an even greater eigenvalue would be
λ1 I itself.

For the other case that λ j = λ1 for a fixed j ∈ {2, . . . , n}
will we assume that without loss of generality j = 2 holds.
We summarise the argumentation necessary for this in the
following theorem:

Theorem 2 Let S be the LES of the multi-set X = {X1, . . . ,

Xn}, n ∈ N, of symmetric real 2×2matriceswith the spectral
decomposition (13) and λ1 = λ2 the largest eigenvalues of
all these matrices. Then one has

S =
{

λ1 I, if u1 �= ±u2,

λ1u1uT1 + μ∗v1vT1 , otherwise,

where μ∗ ≤ λ1 is the next largest eigenvalue whose eigen-
vector v∗ is not aligned with u1.

Proof 1.) To ensure assumption (15), we begin this proof
with the same rotation as in the proof of Theorem 1. Then,
we consider some of the properties of S. The first property is
that the largest eigenvalue of S is λ1. This is a consequence
of Lemma 5 and the fact that the Rayleigh product R∗(ε)
for this case is greater than or equal to the R(ε) in Lemma
1. Consequently, Lemma 2 is also subject to this relation in
accordance with

lim
m→∞

1

m
log R∗(ε) ≥ lim

m→∞
1

m
log R(ε) = λ1.

This leads to the second property, namely the spectral decom-
position of the rotated LES S−ϕ1 :

S−ϕ1 = λ1ūūT + αv̄v̄T, λ1 ≥ α ∈ R,

ū = (c, s)T, v̄ = (−s, c)T, c = cos(ϕ),

s = sin(ϕ), ϕ ∈
[
−π

2
,
π

2

]
.

Lemma 6 gives us the upper bound property, in particular,
this satisfies

0 ≤L S−ϕ1 − X1

= λ1

(
ūūT − u1uT1

)
+ αv̄v̄T − μ1v1v

T
1

= λ1

(
c2 − 1 cs
cs s2

)
+ α

(
s2 −cs
−cs c2

)

−
(
0 0
0 μ1

)

=
(

αs2 − λ1s2 cs(λ1 − α)

cs(λ1 − α) λ1s2 + αc2 − μ1

)

=
(
s2(α − λ1) cs(λ1 − α)

cs(λ1 − α) c2(α − λ1) + λ1 − μ1

)
,

but this is only fulfilled if

s2(α − λ1) ≥ 0 ∧ c2(α − λ1) + λ1 − μ1 ≥ 0

∧ det(S−ϕ1 − X1) ≥ 0
(21)

apply.

2.) Let us assume that s2 �= 0, then it follows from the first
relation of (21) that α ≥ λ1. Because of Lemma 5, the eigen-
value α cannot be greater than λ1, which leads to α = λ1.
This in turn leads to the spectral decomposition having the
following form:

S−ϕ1 = λ1

(
ūūT + v̄v̄T

)
= λ1

(
c2 + s2 0

0 c2 + s2

)
= λ1 I .

By rotating all eigenvectors back by Rϕ1 , we achieve

S = Rϕ1S−ϕ1R
T
ϕ1

= λ1Rϕ1 I R
T
ϕ1

= λ1 I .

3.) Now we assume the other case s2 = 0. Therefore, we
have s = 0 and c = ±1. If we insert these values into the
spectral decomposition, we obtain

S−ϕ1 = λ1

(
1 0
0 0

)
+ α

(
0 0
0 1

)
=
(

λ1 0
0 α

)
.

By comparing with equation (21), we see that the only non-
trivial condition remaining is α ≥ μ1.

If now u1 = ±u2 would hold, the matrix Em =
(emi j )i, j=1,2 would have the entries

em11 = 2emλ1 +
n∑

i=3

(
c2i e

mλi + s2i e
mμi
)

,

em12 =
n∑

i=3

ci si
(
emλi − emμi

) = em21 and

em22 = emμ1 + emμ2 +
n∑

i=3

(
s2i e

mλi + c2i e
mμi
)

.

Thus, we can repeat all the steps up to Theorem 1 with minor
adjustments and get the result from the theoremwithα = μ∗,
whereμ∗ is the next largest eigenvalue ofX whose eigenvec-
tor v∗ is not aligned with u1. By rotating it back, we achieve
as in the proof of Theorem 1:

S = Rϕ1S−ϕ1R
T
ϕ1

= Rϕ1

(
λ1e1eT1 + μ∗e2eT2

)
RT

ϕ1

= λ1Rϕ1e1
(
Rϕ1e1

)T + μ∗Rϕ1e2
(
Rϕ1u2

)T
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= λ1u1uT1 + μ∗v1vT1 .

Otherwise, we return to the argumentation of Lemma 4
with the difference that λ2 = λ1 holds. We then obtain for
the Rayleigh product in the case s22 �= 0:

R(ε) = emλ1

1+ ε2

((
s2 − εc2

)2 + ε2 + em(μ1−λ1)

+ (c2 + εs2
)2em(μ2−λ1)

+
n∑

i=3

((
si − εci

)2em(λi−λ1)

+ (ci + εsi
)2em(μi−λ1)

))

= emλ1

1+ ε2

((
s2 − εc2

)2 + ε2

+O
(
em(μ∗−λ1)

))
,

where μ∗ is again the next largest eigenvalue of X whose
eigenvector v∗ is not aligned with u1. By determining
1
m log R(ε) again for this and then taking the limit for m →
∞, the ε terms and theO(·) term will disappear and only λ1
remains. Thus, we have S−ϕ1 = λ1 I again. ��

At this point, we would also like to give a small example
in the case that the largest eigenvalue is not unique.

Example 2 Here we consider the simple example of a bipar-
tite image consisting of the two RGB colours blue C1 =
(0, 0, 1) and green C2 = (0, 1, 0). The corresponding sym-
metric matrices are

X1 = 1

2
√
2

(√
3 −1

−1 −√
3

)

≈
(

0.6124 −0.3535
−0.3535 −0.6124

)

and

X2 = 1

2
√
2

(−√
3 −1

−1
√
3

)

≈
(−0.6124 −0.3535
−0.3535 0.6124

)
.

This results in the following eigenvalues and eigenvectors:

λ1 = 1√
2
≈ 0.7071, μ1 = −λ1,

u1 = 1

2
√
2+√

3

(−√
3− 2
1

)
≈
(−0.9659

0.2588

)
,

v1 = 1

2
√
2+√

3

( −1
−√

3− 2

)
≈
(−0.2588
−0.9659

)

and

λ2 = λ1, μ2 = μ1,

u2 = 1

2
√
2+√

3

( −1√
3+ 2

)
≈
(−0.2588

0.9659

)
,

v2 = 1

2
√
2+√

3

(−√
3− 2
−1

)
≈
(−0.9659
−0.2588

)
.

Since the largest eigenvalue is not unique and the correspond-
ing eigenvectors u1, u2 are not equal, we obtain by Theorem
2 the LES

S = λ1 I = 1√
2
I ≈

(
0.7071 0

0 0.7071

)
,

which represents the RGB colour white (1, 1, 1).

To clarify the phenomenon that the supremum of blue and
green in Fig. 5 of Example 2 is white, we must first bear in
mind that both colours lie on the edge of the unit circle of the
bi-cone, directly opposite each other in the y-direction, see
Figure 6.

This means that in order to maintain the Loewner order,
you would have to choose the smallest circle that contains
both points. However, this smallest circle depends on the
choice of the supremum. If, for example, we choose the
trace supremum of Burgeth et al. [23], see Fig. 6, this cir-
cle protrudes from the unit circle and the resulting cone from
the bi-cone, i.e. it would be an impermissible colour. This
is avoided by the warp factor introduced by Burgeth and
Kleefeld [18], see Fig. 6, but at the cost that the circle no
longer includes blue and green, i.e. is no longer larger accord-
ing to the Loewner order. The LES basically sees it in such
a way that the smallest and only circle within the bi-cone,
which still includes blue and green, is the unit circle itself,
i.e. white.

Remark 2 The discolouration that occurs in the LES is there-
fore a fundamental consequence of the Loewner order, which
states that the closer the colours are to the edge and the further
apart they are, the higher the colour cone of the supremum
must be.

3.3 General Characterisation and Properties of the
LES

In this subsection, we will give a general characterisation of
the LES for any combination of eigenvalues. Based on this,
we will show two interesting properties in the form of tran-
sitivity and associativity with respect to dilation. The latter
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Fig. 5 Dilation of a bivariate
image consisting of blue and
green from example 2 with a
centred quadratic SE using the
LES. From left to right:
original image and dilated image

Fig. 6 Comparison of dilation
of the colours green and blue
with different suprema
regarding the Loewner order
inside the bi-cone

property in particular sets our approach apart from othermul-
tidimensional approaches, since, to our knowledge, it does
not exist in colour morphology as opposed to greyscale mor-
phology.

In order to provide greater clarity, we shall now present
a summary of the two preceding theorems in the form of a
corollary that gives us a general characterisation of the LES.

Corollary 1 Let S be the LES (11) of the multi-set X =
{X1, . . . , Xn}, n ∈ N, of symmetric real 2× 2 matrices with
the spectral decompositions (13) and λ1 (one of) the largest
eigenvalues of all these matrices. Furthermore, let V(X ) be
the set of all eigenvectors of the matrices of X and Vλ1

sup(X )

be the set of corresponding eigenvectors to the largest eigen-

values equal to λ1, i.e.

Vλ1
sup(X ) := {v ∈ V(X ) : ∃X ∈ X : Xv = λv

∧ λ = λ1}.

Then, the LES can be characterised as follows:

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1 I, if λ1 is not unique

and ∃v ∈ Vλ1
sup(X ) :

v �= ±u1,

λ1u1uT1 + μ∗v1vT1 , otherwise,

(22)
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where μ∗ ≤ λ1 is the next largest eigenvalue of X whose
corresponding eigenvector v∗ is not aligned with u1.

We will show in the following proposition that the LES
S, as previously characterised by (22), exhibits a transitive
property in general.

Proposition 1 The LES (11) is transitive, i.e. for multi-sets
X and Y of symmetric 2× 2 matrices one has

SupLE(X ∪ Y)

= SupLE
({SupLE(X ), SupLE(Y)}). (23)

Proof 1.) For the multi-sets, we will use the notation

X = {X1, . . . , Xn}, Y = {Y1, . . . ,Ym},
Z = {Z1, . . . , Zn+m} := X ∪ Y, m, n ∈ N.

The right-hand side of (23) can be calculated as

Sr := SupLE
({S1, S2})

:= SupLE
({SupLE(X ),SupLE(Y)}).

The LES S1 and S2 are characterised according to (22) as

S1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1 I, if λ1 is not unique

and ∃v ∈ Vλ1
sup(X ) :

v �= ±u1,

λ1u1uT1 + λ∗v1vT1 , otherwise,

and

S2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ1 I, if μ1 is not unique

and ∃v ∈ Vμ1
sup(Y) :

v �= ±ũ1,

μ1ũ1ũ
T
1 + μ∗ṽ1ṽT1 , otherwise.

For the characterisation of S1, we assumed that λ1 is the
largest eigenvalue of X with the corresponding eigenvector
u1,λ∗ is the next largest eigenvalue ofX whose eigenvector is
not aligned with u1 and v1 is the eigenvector perpendicular
to u1. The same can be said of the characterisation of S2,
insofar as we use Y , μ1 and μ∗ instead of λ1 and λ∗ and the
eigenvectors ũ1 and ṽ1 as replacement for u1 and v1.

Since Sr is again an LES approximation for two symmet-
ric 2× 2 matrices, we can characterise it as follows

Sr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η1 I, if η1 is not unique

and ∃v ∈ Vη1
sup(S) :

v �= ±ū1,

η1ū1ūT1 + η∗v̄1v̄T1 , otherwise,

where η1 represents the maximum of λ1 and μ1 and it is
associated with the corresponding normalised eigenvector
ū1. The term η∗, on the other hand, denotes the next largest
eigenvalue within the set {λ1, λ∗, μ1, μ∗} of possible eigen-
values and, in addition, corresponds to an eigenvector that is
not aligned with ū1. The eigenvector v̄1 denotes the eigen-
vector perpendicular to ū1 and S is defined as S := {S1, S2}.
2.) For the left-hand side of (23), we obtain with the charac-
terisation (22):

Sl := SupLE(Z)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ν1 I, if ν1 is not unique

and ∃v ∈ Vν1
sup(Z) :

v �= ±û1,

ν1û1û
T
1 + ν∗v̂1v̂T1 , otherwise,

where ν1 is (one of) the largest eigenvalues ofZ with the cor-
responding normalised eigenvector û1, ν∗ is the next largest
eigenvalue of Z with an eigenvector that is not aligned with
ν1 and v̂1 is the normalised eigenvector perpendicular to û1.
Since ν1 is the largest eigenvalue ofZ = X ∪Y , it is also the
largest eigenvalue of X and Y and as such it fulfils ν1 = η1.

3.) Thefirst case of Sl will only happen if there are at least two
largest eigenvalues in Z whose eigenvectors are not aligned.
As they would be the largest eigenvalues of Z , they would
also be the largest eigenvalues of X or Y . In the event that
both values correspond tomatrices from themulti-setX , then
S1 would be a diagonal matrix with these eigenvalues. The
same would apply for S2 if they would both correspond to
matrices from Y . This implies that in these cases, one of S1
and S2 would be a diagonal matrix with these eigenvalues.
As they are part of the largest eigenvalues, the corresponding
matrix would be selected for Sr .

For the case that these two eigenvalues are distributed
between X and Y , they would nevertheless be selected as
either λ1, λ∗, μ1 or μ∗. This is because they remain the
largest eigenvalues, and any other largest eigenvalues would
have the same eigenvectors as these two, which would then
be deemed equivalent to the corresponding one of the two
largest eigenvalues with non-aligned eigenvectors. Conse-
quently, the corresponding eigenvectors would be inVη1

sup(S),
and Sr would take the form of a diagonal matrix with these
two eigenvalues. In conclusion, The first case of Sl occurs if
and only if it occurs at Sr and they coincide.

4.) For the second case,we use thatwe have already identified
η1 with ν1. This implies that the corresponding eigenvectors
are also the same, that is, we have û1 = ū1 and v̂1 = v̄1. Ulti-
mately, it follows from the construction of the corresponding
characterisations shown above and a similar reasoning as in
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the first case that ν2 = η2 must hold. Furthermore, it can be
shown that Sl and Sr are identical in this case. ��

To conclude this section, we want to use this property to
prove the associativity of LES dilation. For this purpose, we
first define what we understand by LES dilation and LES
erosion.

Definition 5 Let � ⊆ Z
2 be the two-dimensional, discrete

image domain, f : � → R
3 a colour image and b : Z2 →

R
3∪{(−∞,−∞,−∞)T} the structuring functionwith com-

ponents according to (1) of the set B0 ⊂ Z
2. Furthermore,

let τ : R3 → Sym(2) be the transformation from the vector
of the corresponding colour space to the symmetric 2 × 2
matrix according to Subsection 2.1. Then we define the LES
dilation as

( f ⊕LES b) (x)

:= τ−1
(
SupLE

({
τ ( f (x − u)) + τ (b(u)) :

u ∈ Z
2})), x ∈ �.

(24)

In accordance with the duality (5) between dilation and ero-
sion for the grey value case, we can also define the LES
erosion here by means of LES dilation as follows:

( f 	LES b) (x) := ( f c ⊕LES b
)c

(x), x ∈ �, (25)

where the complement of a colour vector is to be understood
as an component-wise complementation according to (4):

f c(x) =
(
(R,G, B)T

)c := (Rc,Gc, Bc)T

=
⎛
⎝ Rmax − R + Rmin

Gmax − G + Gmin

Bmax − B + Bmin

⎞
⎠ , x ∈ �.

Here, Rmax represents the largest red value of the image f
and Rmin the smallest; the same applies to the corresponding
G and B terms.

We now turn to the mentioned associativity of LES dilation.

Theorem 3 The LES dilation (24) is associative, i.e. for a
colour image f : Z

2 → [0, 1]3 and for the structuring
elements given by the structuring functions b1, b2 : Z2 →
R
3 ∪ {(−∞,−∞,−∞)T

}
of two sets B1, B2 ⊂ Z

2 applies

( f ⊕LES b1) ⊕LES b2 = f ⊕LES (b1 ⊕LES b2). (26)

Proof To proof this claim, we will compare the considered
matrices for both sides of the equation.We use the expression
X(x) := τ ( f (x)) to notate the matrices of the image f .
Similarly, we do this for the structuring functions of B1 and

B2 using the matrices W1(x) := τ (b1(x)) and W2(x) :=
τ (b2(x)).

For the left-hand side of equation (26), we calculate for
the first dilation

( f ⊕LES b1)(x)

= τ−1
(
SupLE

({X(x − y) +W1( y) : y ∈ B1}
))

and by the second dilation

(
( f ⊕LES b1) ⊕LES b2

)
(x)

= τ−1
(
SupLE

({
τ
(
( f ⊕LES b1)(x − z)

)
+W2(z) : z ∈ B2

}))

= τ−1
(
SupLE

({
SupLE

({X(x − y − z)

+W1( y) : y ∈ B1}
)+W2(z) : z ∈ B2

}))

Since B2 is a discrete set, we can numerate the elements of
B2 with z1, . . . , zm , m ∈ N, and rewrite the equation as

(
( f ⊕LES b1) ⊕LES b2

)
(x)

= τ−1
(
SupLE

(
SupLE

({X(x − y − z1)

+W1( y) : y ∈ B1}
)+W2(z1), . . . ,

SupLE
({X(x − y − zm) +W1( y) : y ∈ B1}

)
+W2(zm)

))

= τ−1
(
SupLE

(
SupLE

({X(x − y − z1)

+W1( y) +W2(z1) : y ∈ B1}
)
, . . . ,

SupLE
({X(x − y − zm) +W1( y)

+W2(zm) : y ∈ B1}
)))

, x ∈ �,

since the summation with a constant matrixW2(zi ) does not
influence the decision of the LES except of a global (for each
individual LES) rotation of the eigenvectors and change of
the eigenvalues. Then by setting

Yi (x) := {X(x − y − zi ) +W1( y) +W2(zi ) :
y ∈ B1}, x ∈ �,

and using the transitivity (23), we obtain for all x ∈ �:

(
( f ⊕LES b1) ⊕LES b2

)
(x)
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= τ−1
(
SupLE

(
SupLE

(Y1(x)
)
, . . . ,

SupLE
(Ym(x)

)))

= τ−1
(
SupLE

( m⋃
i=1

Yi (x)
))

= τ−1
(
SupLE

({
X(x − y − z) +W1( y)

+W2(z) : y ∈ B1 ∧ z ∈ B2
}))

. (27)

The right-hand side of (26) fulfils for the first dilation with
the structuring functions the equality

(b1 ⊕LES b2)( y)

= τ−1
(
SupLE

({W1( y − z) +W2(z) :
z ∈ B2}

))
, y ∈ Z

2.

However, since b1 and as such W1 will “vanish” with −∞
in the sense of the dilation for y− z /∈ B1, we can introduce
the set

B1 ⊕ B2 := {x1 + x2 : x1 ∈ B1 ∧ x2 ∈ B2}

and replace y ∈ Z
2 with y ∈ B1 ⊕ B2. We calculate the

second dilation as follows

(
f ⊕LES (b1 ⊕LES b2)

)
(x)

= τ−1
(
SupLE

({
X(x − y)

+ SupLE
({W1( y − z) +W2(z) : z ∈ B2}

) :
y ∈ B1 ⊕ B2

}))
, x ∈ �.

Given that B1⊕B2 is also a discrete set, the same countability
trick that was employed previously can be applied, resulting
with y1, . . . , yk in the following:(
f ⊕LES (b1 ⊕LES b2)

)
(x)

= τ−1
(
SupLE

(
X(x − y1)

+ SupLE
({W1( y1 − z) +W2(z) : z ∈ B2}

)
,

. . . , X(x − yk) + SupLE
({W1( yk − z)

+W2(z) : z ∈ B2}
)))

= τ−1
(
SupLE

(
SupLE

({X(x − y1)

+W1( y1 − z) +W2(z) : z ∈ B2}
)
, . . . ,

SupLE
({X(x − yk) +W1( yk − z) +W2(z) :

z ∈ B2}
)))

, x ∈ �.

By defining

Zi (x) := {X(x − yi ) +W1( yi − z) +W2(z) :
z ∈ B2}, x ∈ �,

and using the transitivity (23), we obtain for all x ∈ �:

(
f ⊕LES (b1 ⊕LES b2)

)
(x)

= τ−1
(
SupLE

(
SupLE

(Z1(x)
)
, . . . ,

SupLE
(Zk(x)

)))

= τ−1
(
SupLE

( k⋃
i=1

Zi (x)
))

= τ−1
(
SupLE

( ⋃
y∈B1⊕B2

{X(x − y)

+W1( y − z) +W2(z) : z ∈ B2}
))

.

By substituting y = ŷ + z with ŷ ∈ B1 and z ∈ B2 in the
last equation, we see that it equals (27), which concludes the
proof. ��

We demonstrate the correctness of this statement again
using the colours from example 1, see Fig. 7. To do this, we
also use a different SE for b2 in the formof a centred quadratic
11 × 11 mask. We can see from this that the two resulting
images match visually according to (26). An examination of
the numerical colour values also shows an identity between
these images.

Remark 3 Analogously, it can be shown for LES erosion (25)
that

( f 	LES b1) 	LES b2 = f 	LES (b1 ⊕LES b2)

applies.

4 Minimality of the LES

So far, we have only shown that the LES (11) is an upper
bound in the sense of the Loewner order. In this section, we
address the question of whether it is also a smallest upper
bound or under which conditions it is. To do this, we start
from the framework [8] ofWelk, Kleefeld and Breuß and add
another function to our semi-order to select a smallest upper
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Fig. 7 Comparison of the associativity of dilation using the LES based
on example 1. From left to right: LES dilation δ1 of the 90×90 image
from example 1 with the same 1× 41 SE, LES dilation δ2 of δ1 with a

centred 11×11 SE and LES dilation of the image from example 1 with
the LES-dilated SE of the 1× 41 SE and the 11× 11 SE

bound from the set of upper bounds introduced by the semi-
order, as already mentioned in Section 2.2. This auxiliary
function serves to find a unique minimum within the given
set, so that we may have no total order but an auxiliary order.
This is the reason why we refer to it as the auxiliary ordering
function.

The main problem here is the existence of a total ordering
function ϕ on the set U(X ) of upper bounds in the Loewner
sense of the symmetric matrices X = {X1, . . . , Xn}, n ∈ N,
for which the LES S is the unique minimiser. To see this, we
first prove the following lemma.

Lemma 7 Let S be the LES (11) for a given multi-set X of
symmetric 2 × 2 matrices and let λ1 be the unique largest
eigenvalue of X . Whenever the second largest eigenvalue
λ2 of X is unique, and its original eigenvector u2 is not
perpendicular to the eigenvector u1 of λ1, there exists some
matrix

S′ := λ1u1uT1 + (λ2 − ε)v1v
T
1 ∈ U(X ), ε > 0. (28)

Proof Due to Theorem 1, S = λ1u1uT1 + λ2v1v
T
1 holds,

where v1 is the eigenvector perpendicular to u1. Since we
can add a constant value to all eigenvalues and subtract it
again laterwhenwehave formed theLES,we assumewithout
loss of generality that λ1 = 1, and its associated eigenvector
is u1 = (1, 0)T. This makes v1 = (0, 1)T and we get the
representation

S =
(
1 0
0 λ2

)
, λ2 < 1.

Let

S′ =
(
1 0
0 q

)
, q < λ2.

Thenwe examine for which q thematrix S′ remains inU(X ).
For this, we choose an arbitrary X ∈ X with a major

eigenvalue λ satisfying λ ≤ λ2 and the associated eigenvec-
tor u = (c, s)T with c = cos(ϕ) and s = sin(ϕ). Further,
let μ be the minor eigenvalue of X and have the associated
eigenvector v = (−s, c)T. Then X has the following repre-
sentation

X =
(

λc2 + μs2 cs(λ − μ)

cs(λ − μ) λs2 + μc2

)

because of its spectral decomposition (13). Note that Y :=
S′ − X ≥L 0 must necessarily be satisfied for S′ ∈ U(X ) to
hold. To verify Y ≥L 0, the following relations must apply:

RY (u1) ≥ 0 ∧ RY (u2) ≥ 0 ∧ det(Y) ≥ 0.

We calculate for the first term

RY (u1) = 1− λc2 − μs2

≥ 1− λc2 − λs2 = 1− λ

≥ 1− λ2 > 0.

(29)

In order for the second term, RY (u2) = q − λs2 − μc2, to
be non-negative, it is always possible to find a q ∈ [λs2 +
μc2, λ2) that will fulfil this requirement, provided X �= X2

with u2 = (0, 1)T ⊥ u1. Then, the last term can be calculated
as

det(Y) =
∣∣∣∣1− λc2 − μs2 cs(λ − μ)

cs(λ − μ) q − λs2 − μc2

∣∣∣∣
= (1− λc2 − μs2)(q − λs2 − μc2)

− c2s2(λ − μ)2

= q(1− λc2 − μs2) − λs2 + c2s2(λ2 + μ2)
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+ (c4 + s4)λμ − μc2 − c2s2(λ − μ)2

= q(1− λc2 − μs2) − λs2 − μc2

+ (c4 + 2c2s2 + s4)λμ

= q(1− λc2 − μs2) − λs2 − μc2

+ (c2 + s2)2λμ

= q(1− λc2 − μs2) − λs2 − μc2 + λμ

which is non-negative if and only if

q ≥ λs2 + μc2 − λμ

1− λc2 − μs2

= λ
1− λc2 − μs2

1− λc2 − μs2

+ λ(s2 − 1) + μc2 − λμ(1− s2) + λ2c2

1− λc2 − μs2

= λ + c2(μ − λμ + λ2 − λ)

1− λc2 − μs2

= λ + c2(1− λ)(μ − λ)

1− λc2 − μs2

= λ − c2(1− λ)(λ − μ)

1− λc2 − μs2
. (30)

Since c2 ≥ 0, μ ≤ λ < 1 and (29), we see that the fraction
on the right-hand side is non-negative. This means that the
largest term that can occur on the right-hand side would be
λ and since λ2 is our second largest eigenvalue and unique,
λ < λ2 except in the case where we consider the matrix X
belonging to λ2. However, in this case, because of unique-
ness, λ2 > μ2 and c2 �= 0, otherwise u2 would point in the
same direction as v1, contradicting the condition u2 �⊥ u1.
This means that the fraction on the right-hand side would be
positive, and thus, the term on the right-hand side would be
strictly less than λ2.

The case for X with λ = λ1 provides the matrix

Y =
(
0 0
0 q − μ1

)

with μ1 < λ2 because λ2 is the second largest eigenvalue
and unique. The relation Y ≥L 0 holds if and only if q ≥ μ1.
Since μ1 < λ2 and q < λ2 (otherwise S′ = S), we can find
a q with μ1 ≤ q < λ2 to fulfil the requirement.

In summary, this means that in every case the right-hand
side of (30) is strictly less than λ2. Thus, if we compute for
all X ∈ X the bounds of q, which are all strictly less than λ2,
and then take the largest of them, we obtain the claim (28)
of the lemma. ��
Corollary 2 Under the conditions of Lemma 7, S cannot be
the unique minimiser of a function ϕ according to (10).

Proof Suppose S were a minimiser of a function ϕ accord-
ing to (10). Then ϕ(S) ≥ ϕ(S′) because S ≥L S′ and the
Loewner monotonicity of ϕ. Since S is minimal with respect
to ϕ, only ϕ(S) = ϕ(S′) can be true. However, this is a
contradiction to the uniqueness of the minimiser. ��

This may seem like a big disadvantage at first. However,
with the following slight modification of our set U(X ) of
possible upper bounds of X , we can ensure that the LES
actually acts as a minimiser there, as we will demonstrate in
this section.

Definition 6 For a multi-set X of symmetric 2× 2 matrices
with non-negative eigenvalues, let X p := {X p : X ∈ X } be
the element-wise application of the pth power to themulti-set
X . We define the p-power upper bound cone as

Up(X ) := (U(X p)
) 1
p

= {Y ∈ Sym(2) : Y p ∈ U(X p)}
(31)

and denote the intersection of all p-power upper bound cones
as the super-upper bound cone

U∗(X ) :=
⋂
p>0

Up(X ). (32)

For a multi-set X of symmetric 2 × 2 matrices for which
−c < 0 is the smallest among all eigenvalues of the matrices
in X , define

U∗(X ) := U∗(X + c) − c, (33)

where

X + c := {X + cI : X ∈ X }

and I is the identity matrix.

Remark 4 Equation (33) is particularly applicable to the set
U(X ) of upper bounds of a multi-set X , as SupLE(X + c)−
cI = SupLE(X ), and thus, U(X + c) − c = U(X ) always
hold.

To show that S is the unique minimiser of ϕ in U∗(X ), we
first prove that it is contained in it.

Lemma 8 Let X be a multi-set of symmetric 2× 2 matrices,
and let S be as in Lemma 7. Then one has S ∈ Up(X ) for
any p > 0.

Proof Weuse for S the same form as in Lemma 7 and assume
again without loss of generality that λ1 = 1, and its associ-
ated eigenvector is u1 = (1, 0)T. This implies v1 = (0, 1)T.

123



   52 Page 20 of 28 Journal of Mathematical Imaging and Vision            (2025) 67:52 

Since we only consider real symmetric and thus diagonal-
isable matrices, we can simply express the power of such a
matrix according to [21] as follows:

X p = λpuuT + μpvvT.

The representation of S in terms of the pth power will then
take the following form:

Sp =
(
1 0
0 λ

p
2

)
.

On the basis of U(X + c) − c = U(X ), see Remark 4, we
can assume without restriction that λ2 ≥ 0 applies. So we
see that the only difference to our previous calculation of the
LES is that all eigenvalues are now raised to the power of p.
This means that our LES looks the same as before with the
difference that we exponentiate its entries, i.e. the two largest
permissible eigenvalues, by p and thus obtain Sp. Thus, we
have Sp ∈ U(X p), from which the claim follows. ��

Next, we will define the as yet unspecified function ϕ and
show that it fulfils all the necessary conditions according to
Section 2.2. In particular, we will see that for this function S
is the unique minimiser in U∗(X ).

Theorem 4 Let the conditions of Lemma 8 be satisfied and
let the function ϕ : U(X ) → R

2 be explained as ϕ(Y) =
(λ, μ), where λ > μ are the eigenvalues of Y ∈ U(X ).
Further, let R2 be endowed with the lexicographic order

(a, b) ≺ (a′, b′) :⇐⇒ (a < a′ ∨ (a = a′ ∧ b ≤ b′)),
a, b, a′, b′ ∈ R.

(34)

Then it follows that

(i) the function ϕ is Loewner-monotone,

(ii) the function ϕ is convex on U(X ), and

(iii) S is the unique minimiser of ϕ in U∗(X ).

Proof (i) Let A, B ∈ U(X ) with B ≤L A. The inequality
implies that for any vector w ∈ R

2 the Rayleigh products
must satisfy RB(w) ≤ RA(w).

By setting w = uB to the unit eigenvector corresponding
to the largest eigenvalue λB of B, the Rayleigh product of
B will equal the largest eigenvalue according to RB(uB) =
λB . The Rayleigh product of A with uB will take a value
α ∈ [μA, λA] according to the min-max theorem (cf. [24],
Theorem 4.2.2), where μA is the smaller and λA the larger
eigenvalue of A. Upon inserting this into the inequality for
the Rayleigh products, we obtain

λB = RB(uB) ≤ RA(uB) = α ≤ λA,

from which it follows that the largest eigenvalue of A is
greater or equal to the largest eigenvalue of B. If λA > λB ,
ϕ(B) � ϕ(A) is already established.

If this is not the case, we need to consider the minor
eigenvalues of A and B. By choosing w = vA as the unit
eigenvector corresponding to the smallest eigenvalue μA of
A, the Rayleigh product of A will equal the smallest eigen-
value according to RA(vA) = μA. If we also consider the
Rayleigh product with B, we again obtain with the min-max
theorem a value β ∈ [μB, λB], where μB is the smallest
eigenvalue of B, for this and by inserting it into the inequal-
ity mentioned at the beginning, we obtain

μB ≤ β = RB(vA) ≤ RA(vA) = μA.

Consequently, we can guarantee that the smallest eigenvalue
of B is less than or equal to the smallest eigenvalue of A, and
thus, ϕ(B) � ϕ(A) holds.

(ii)Wewant to prove here thatϕ is convexonU(X ) according
to Definition 3. For this, we consider the two vector spaces
Sym(2) and R

2 and the convex set U(X ) ⊂ Sym(2). We
have already seen the convexity of the last set in Section 2.2.
Further, we need an order cone on the R2 equipped with the
lexicographic order, which we denote simply as

K := {x ∈ R
2 : x � 0}.

That is, the only thing we still need to check is the validity
of (9). For this, we consider for all Y1,Y2 ∈ U(X ) and
α ∈ [0, 1]:

αϕ(Y1) + (1− α)ϕ(Y2) − ϕ(αY1 + (1− α)Y2) ∈ K

⇐⇒ 0 � αϕ(Y1) + (1− α)ϕ(Y2)

− ϕ(αY1 + (1− α)Y2)

⇐⇒ αϕ(Y1) + (1− α)ϕ(Y2)

� ϕ(αY1 + (1− α)Y2) =: ϕ(Z). (35)

Let us assume without loss of generality that Z is a diag-
onal matrix. Further, let λi ≥ μi be the eigenvalues of Y i

with the corresponding eigenvectors (ci , si )T, (−si , ci )T for
i = 1, 2 according to (13). Then, we have

Z =
(

λ∗ 0
0 μ∗

)

with

λ∗ := α(λ1c
2
1 + μ1s

2
1 ) + (1− α)(λ2c

2
2 + μ2s

2
2 )

and

μ∗ := α(λ1s
2
1 + μ1c

2
1) + (1− α)(λ2s

2
2 + μ2c

2
2).
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Note that the two eigenvalues λ∗, μ∗ do not necessarily have
to be ordered in thisway. Ifwe substitute this into our inequal-
ity (35), we obtain

α

(
λ1
μ1

)
+ (1− α)

(
λ2
μ2

)
�
(

λ∗
μ∗

)
. (36)

To prove this inequality, we first show that both eigenval-
ues λ∗, μ∗ are less than or equal to αλ1 + (1− α)λ2:

λ∗ ≤ α(λ1c
2
1 + λ1s

2
1 ) + (1− α)(λ2c

2
2 + λ2s

2
2 )

= αλ1 + (1− α)λ2,

μ∗ ≤ α(λ1s
2
1 + λ1c

2
1) + (1− α)(λ2s

2
2 + λ2c

2
2)

= αλ1 + (1− α)λ2.

If strict inequality applies to both inequalities, wewould have
proven the statement. Otherwise, one of the two diagonal
entries is equal to αλ1+(1−α)λ2, without loss of generality,
let this be λ∗. Then it follows

μ∗ = tr(Z) − λ∗ = tr(Z) − αλ1 − (1− α)λ2

= αtr(Y1) + (1− α)tr(Y2) − αλ1

− (1− α)λ2

= α(tr(Y1) − λ1) + (1− α)(tr(Y2) − λ2)

= α(λ1 + μ1 − λ1) + (1− α)(λ2 + μ2 − λ2)

= αμ1 + (1− α)μ2

whereby we have exploited in the last line that the trace of a
matrix can be understood as the sum of its eigenvalues. This
means that in this case the smaller eigenvalue of Z is just the
convex combination of the smaller eigenvalues of Y1 and Y2

or, in other words, satisfies the second line of inequality (36)
with equality.

(iii) For this, we use the argumentation from the proof of
Lemma 7 for (S′)p and X p instead of S′ and X to obtain a
necessary condition for (S′)p ≥L X p, using the representa-
tion from the proof of Lemma 8 for X p. Since in both cases
the exponentiation by p does not change the eigenvectors but
only the eigenvalues, we can take our conclusion (30) from
the proof of Lemma 7 by exponentiating the eigenvalues all
by p:

q p ≥ λp − c2(1− λp)(λp − μp)

1− λpc2 − μps2
. (37)

As in the proof of Lemma7,we have again that the fraction on
the right-hand side of (37) is non-negative for all μ ≤ λ < 1
and p > 0.

In the proof of Lemma 7 we had shown that the right-
hand side of the inequality (30) analogous to (37) was
always smaller than λ2. Thus, we could guarantee that an

ε > 0 exists, so that a similar matrix to the LES S exists
whose second eigenvalue according to λ2 − ε < λ2 is
strictly smaller than that of the LES S, which showed that
the LES was not the unique minimiser. So all we have to
prove here is that no such ε exists for given λ,μ, c, s and
p → ∞.

Let us assume that ε > 0 exists so that (37) is satisfied
for q = λ − ε and arbitrarily large p > 0. In particular,
we can also assume without restriction of generality that our
eigenvalues can be mapped bijectively to the interval [0, 1]
or more precisely to[ 1√

2
−λold1√
2

, 1

]
, where λold1 is the original largest eigen-

value of X , so that λ1 = 1 and μ1, λi , μi ∈ [0, 1) for
i = 2, . . . , n, see the following remark. This would mean
that

0 ≤ (λ − ε)p − λp + c2(1− λp)(λp − μp)

1− λpc2 − μps2

⇐⇒ λp − (λ − ε)p ≤ c2(1− λp)(λp − μp)

1− λpc2 − μps2

≤ (1− λp)(λp − μp)

1− λpc2 − μps2

⇐⇒ (λ − ε)p ≥ λp − (1− λp)(λp − μp)

1− λpc2 − μps2

⇐⇒ ε ≤ λ −
[
λp − (1− λp)(λp − μp)

1− λpc2 − μps2

] 1
p

,

0 ≤ μ ≤ λ < 1, p > 0, (38)

holds. We rewrite the right-hand side of the inequality (38)
into

λ −
[
λp − (1− λp)(λp − μp)

1− λpc2 − μps2

] 1
p

= λ −
⎡
⎣λp − λp

(
1− μp

λp

)
(1− λp)

1− λpc2 − μps2

⎤
⎦

1
p

= λ −
[
λp
(
1−

(
1− μp

λp

)
(1− λp)

1− λpc2 − μps2

)] 1
p

= λ

{
1−

[
1−

(
1− μp

λp

)
(1− λp)

1− λpc2 − μps2

] 1
p
}

.

(39)

If we consider the last [ · ] 1p term in the equation (39), we can
estimate as follows
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[
1− 1

1− λpc2 − μps2

] 1
p

≤
[
1−

(
1− μp

λp

)
(1− λp)

1− λpc2 − μps2

] 1
p ≤ 1

1
p

(40)

and by using the limes for p → ∞ we obtain for the upper
and lower limit

lim
p→∞ 1

1
p = 1, (41)

lim
p→∞

[
1− 1

1− λpc2 − μps2

] 1
p

= lim
p→∞ exp

(
1

p
log

(
1− 1

1− λpc2 − μps2

))

= exp

(
lim
p→∞

1

p
log

(
1− 1

1− λpc2 − μps2

))
= e0 = 1. (42)

By combining (40) with (41) and (42), we achieve

1 ≤ lim
p→∞

[
1−

(
1− μp

λp

)
(1− λp)

1− λpc2 − μps2

] 1
p ≤ 1

or

lim
p→∞

[
1−

(
1− μp

λp

)
(1− λp)

1− λpc2 − μps2

] 1
p = 1. (43)

For the last step, we substitute (39) in (38), let p approach
infinity and use the equation (43):

ε ≤ lim
p→∞ λ

{
1−

[
1

−
(
1− μp

λp

)
(1− λp)

1− λpc2 − μps2

] 1
p
}

= λ

{
1− lim

p→∞

[
1

−
(
1− μp

λp

)
(1− λp)

1− λpc2 − μps2

] 1
p
}

= 0,

which is a contradiction to ε > 0. This means that S′ /∈
U∗(X ). ��
Remark 5 Let X ∈ X be arbitrary and X = λuuT+μvvT as
in (13), whereλ,μ are the eigenvalues of X and u, v the asso-
ciated normalised eigenvectors. Since the greatest element in
the HCL bi-cone is the colour white with the eigenvalues 1√

2
and the smallest element is the colour blackwith the eigenval-

ues − 1√
2
, see [8], we have λ,μ ∈

[
− 1√

2
, 1√

2

]
. This means

that the transformation

X̄ := 1√
2
X +

(
1− λ1√

2

)
I

= 1√
2
λuuT + 1√

2
μvvT +

(
1− λ1√

2

)
uuT

+
(
1− λ1√

2

)
vvT

=
(

λ√
2
+ 1− λ1√

2

)
uuT

+
(

μ√
2
+ 1− λ1√

2

)
vvT

=: λ̄uuT + μ̄vvT

has the eigenvalues λ̄, μ̄ ∈ [0, 1]. It follows from the fact
that

1+ λ − λ1√
2

∈
⎡
⎣ 1√

2
− λ1√
2

, 1

⎤
⎦ ⊆ [0, 1],

where the lower and upper bound are derived from λ ∈[
− 1√

2
, λ1

]
. Consequently, the addition of the scaled unit

matrix affects only the eigenvalues but not the eigenvectors.
As a result, this can also be applied directly to the LES:

S̄ := SupLE
(
X̄1, . . . , X̄n

)
= 1√

2
S+

(
1− λ1√

2

)
I .

5 Relaxation of the LES

Now that we have seen several favourable properties of the
LES, we want to address a disadvantage of our approach that
we have not considered further so far. It is one of the reasons
why this approach was not pursued further in favour of the
trace supremum Suptr in the work [12]. This is due to the
fact that the LES does not depend continuously on the input
data. In this section, we will first look at the cases where this
problem occurs and then see that it can be solved using a
straightforward relaxation.

To visualise this problem, let us consider the follow-
ing scenario: We have a multi-set X = {X1, . . . , Xn},
n ≥ 3, of symmetric 2 × 2 matrices in which the three
largest eigenvalues λ1 > λ2 > λ3 with the associated
eigenvectors u1, u2, u3 belong to three different matrices
X1, X2, X3 ∈ X . In addition, the eigenvectors have the rela-
tionship u1 = u2 and u3 �= ±u1 to each other. According to
Theorem 1, we obtain for the LES

S = λ1u1uT1 + λ3v1v
T
1 , v1 ⊥ u1.
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We will now consider a rotated multi-set X (δ) = {X(δ)
1 , . . . ,

X(δ)
n } by rotating the matrices X i around the angles δαi for

i ≥ 2 with the factor δ > 0. The angles αi can be different
but sin(δα2) �= 0, such that the new eigenvector

u(δ)
2 = Rδα2u2 =

(
cos(δα2) − sin(δα2)

sin(δα2) cos(δα2)

)(
1
0

)

=
(
cos(δα2)

sin(δα2)

)
�= ±u1.

As these are only rotations, the eigenvalues λ
(δ)
i , μ

(δ)
i of X(δ)

i

according λ
(δ)
i = λi and μ

(δ)
i = μi are retained for all i ∈

{1, . . . , n} and δ > 0. By also applying Theorem 1 to this,
we obtain

S(δ) := SupLE(X (δ)) = λ1u1uT1 + λ2v1v
T
1 =: S′,

which is not equal to S. If we now want to determine the
limit value of this for δ → 0, we go to step 2 of the proof
of Lemma 4 and obtain R(ε, δ) according to Equation (19)
with (s2, c2)T = u(δ)

2 . Then, we calculate

lim
δ→0

lim
m→∞

(
1

m
log(R(ε, δ))

)

= lim
δ→0

lim
m→∞

(
λ2 − log(1+ ε2)

m

+ log
(
(− sin(δα2) − ε cos(δα2))

2
)

m

+ log
(
1+O (em(λ2−λ1) + em(μ−λ2)

))
m

)
= lim

δ→0
λ2 = λ2,

because ε → 0 for m → ∞, see proof of Lemma 4, and
sin(δϕ) �= 0. This leads to

lim
δ→0

S(δ) = S′ �= S

although X (δ) → X for δ → 0.
These types of discontinuity are removable, since they

only occur in non-generic configurations of X . To address
these kind of issues, we introduce the following definition.

Definition 7 Let X = {X1, . . . , Xn}, n ∈ N, be a multi-set
of symmetric real 2× 2 matrices with the spectral decompo-
sition (13). We call the multi-set

B(X ) := {B(X1), . . . ,B(Xn)}
:= {{u1, v1}, . . . , {un, vn}}

of orthonormal bases of X generic if and only if no two
orthonormal bases B(X i ), B(X j ), i �= j , share the same ori-
entation, i.e. ui is not alignedwith u j . Furthermore,wedefine

that the multi-sets X (δ) = {X(δ)
1 , . . . , X (δ)

n
}
converge pla-

nar towards the multi-set X , symbolically X (δ) pl−−→ X ,
if X (δ) → X and the eigenvalues of X(δ)

i and X i remain
the same for all i ∈ {1, . . . , n} and δ. Then, we declare the
relaxed log-exp-supremum (RLES) as

SupRLE(X ) :=
{
SupLE(X ), if B(X ) is generic,

SNG, otherwise,
(44)

with

SNG := lim
X (δ)

pl−−→X
B(X (δ)) generic

SupLE(X (δ)).

Remark 6 The idea of planar convergence stems from the fact
that for

X = λuuT + μvvT

=
(

λu21 + μv21 λu1u2 + μv1v2
λu1u2 + μv1v2 λu22 + μv22

)
,

|u| = 1 = |v|, u =
(
u1
u2

)
, v =

(
v1
v2

)
∈ R

2,

λ, μ ∈ R,

and

Y = λssT + μt tT

=
(

λs21 + μt21 λs1s2 + μt1t2
λs1s2 + μt1t2 λs22 + μt22

)
,

|s| = 1 = |t|, s =
(
s1
s2

)
, t =

(
t1
t2

)
∈ R

2,

their z-component in the bi-cone coordinates can be calcu-
lated as follows according to Burgeth and Kleefeld, see [18]:

z(X) = tr(X)√
2

= λu21 + μv21 + λu22 + μv22√
2

= λ|u|2 + μ|v|2√
2

= λ + μ√
2

,

z(Y) = tr(Y)√
2

= λs21 + μt21 + λs22 + μt22√
2

= λ|s|2 + μ|t|2√
2

= λ + μ√
2

.

This means that the z-component remains the same for all
colour matrices as long as they have the same eigenvalues,
and that all the convergence happens on a particular z-plane.
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We can immediately deduce from this definition bymeans
of the following corollary that the RLES does not leave the
bi-cone.

Corollary 3 Let X = (X1, . . . , Xn), n ∈ N, be a multi-set
of symmetric real 2 × 2 matrices, which satisfy − 1√

2
I ≤L

X i ≤L
1√
2
I for all i ∈ {1, . . . , n}. Then we have

− 1√
2
I ≤L SupRLE(X ) ≤L

1√
2
I .

Proof The assertion follows from the fact that the LES lies in
the bi-cone and the RLES has the same eigenvalues for selec-
tion as the LES due to Definition 7. As a result, the largest
eigenvalue cannot be greater than 1√

2
, which gives rise to the

upper bound. The lower bound results from the transitivity
of the Loewner order via − 1√

2
I ≤L X i ≤L SupRLE(X ) for

all i ∈ {1, . . . , n}. ��
Following our first two previous theorems, we therefore

also give a characterisation for the RLES in this form.

Theorem 5 Let X be a multi-set of symmetric real 2 × 2
matrices. Further, let λ1 be (one of) the largest eigenvalue(s)
of X , and u1 the eigenvector associated with the eigenvalue
λ1 and v1 ⊥ u1 the minor eigenvector of the same matrix
from X , and let λ2 ≤ λ1 be the next largest eigenvalue of X .
Then the RLES of X is characterised by

SupRLE(X )

=
{

λ1u1uT1 + λ2v1v
T
1 , if λ1 is unique,

λ1 I, otherwise,

(45)

where I is the identity matrix.

Proof The generic case of (44) is a straightforward conse-
quence of Theorem 1 and Theorem 2. So we only need to
consider the non-generic case.

Let λ1 be unique. In this case, we just need to follow the
argumentation of the calculation that we used to introduce
this section. By the rotation of eigenvectors that were shown
there and the fact that the X (δ) of Definition 7 fulfils all
necessary properties of the mentioned rotated multi-set, we
can conclude the first case of Equation (45).

Now we want λ1 to be not unique. This means that we
have

λ1 = λ2 = λ
(δ)
1 = λ

(δ)
2 , (46)

where λ
(δ)
1 , λ

(δ)
2 are the largest eigenvalues of X (δ) from

Definition 7, since the X (δ) converge planar towards X . Fur-
thermore, let the corresponding eigenvectors of λ1, λ2 be
given by u1 = u2. We can find multi-sets X (δ) for δ > 0

which have the same eigenvalues as X for all δ, generic
B (X (δ)

)
and converge to X for δ → 0, e.g. by rotating

the eigenvectors of X as at the beginning of this section. By
Theorem 2 and Equation (46), we get for the LES of X (δ):

S(δ) := SupLE(X (δ)) = λ
(δ)
1 I = λ1 I ∀δ > 0.

This means S(δ1) = S(δ2) for all δ1, δ2 > 0. For δ → 0, it
follows

lim
δ→0

S(δ) = lim
δ→0

λ1 I = λ1 I,

which concludes the proof. ��
However, the question remains as to whether there is

another type of problem that can cause the aforementioned
discontinuity. We consider the following lemma to partially
answer this question.

Lemma 9 Let the conditions of Theorem 5 be fulfilled. Then,
the RLES, given by Definition 7, depends continuously on the
input data.

Proof Since the LES depends only on the spectral decom-
position of the input data, the discontinuities can only occur
through transformations of the input data, namely the eigen-
values and eigenvectors. Moreover, these transformations
must remain in the bi-cone, so that only a scaling of the

eigenvalues in the interval
[
− 1√

2
, 1√

2

]
and a rotation of the

eigenvectors are possible. We have already shown that the
RLES depends continuously on the rotated input data. There-
fore, it is sufficient to consider only the case of the scaled
eigenvalues.

Since we only want to investigate the case of scaled eigen-
values, we can assume that the eigenvectors will not change

in the modified multi-set Y(δ) =
{
Y (δ)
1 , . . . ,Y (δ)

n

}
→ X

with Y (δ)
i = λ

(δ)
i u(δ)

i

(
u(δ)
i

)T + μ
(δ)
i v

(δ)
i

(
v

(δ)
i

)T
according

to u(δ)
i = ui and v

(δ)
i = vi for all i ∈ {1, . . . , n}. As a result,

as long as the order of the eigenvalues sorted by size does not
change, no discontinuities can occur with regard to the input
data, since λ

(δ)
i → λi and μ

(δ)
i → μi for all i ∈ {1, . . . , n}.

For a multiplicative scaling in the form of λ
(δ)
i := δλi

for δ → 1, there will not occur any discontinuity, since the
order of eigenvalues would stay the same. If we assume an
additive scaling in form of λ

(δ)
i := λi + δαi , αi ∈ R, for

δ → 0, we could change the order of the eigenvalues, e.g.
according to λ1 > λ2 > λ3 but λ

(δ)
3 > λ

(δ)
1 > λ

(δ)
2 for

δ ∈ [a, b] ⊂ [ε1,∞) with a sufficiently small ε1 > 0. Since
theRLESoperates onlywith generic bases, δ → 0 andλ

(δ)
1 >

λ
(δ)
2 > λ

(δ)
3 for δ ∈ (0, ε2) with a sufficiently small ε2 < ε1,

we would obtain as RLES

lim
δ→0

SupRLE(Y(δ))
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= lim
δ→0

δ∈(0,ε2)

λ
(δ)
1 u1uT1 + λ

(δ)
2 v1v

T
1

= λ1u1uT1 + λ2v1v
T
1 = SupRLE(X ).

An analogous reasoning is applicable in the case of non-
unique eigenvalues. ��

We would now like to summarise the most important fea-
tures of the RLES in the following corollary.

Corollary 4 Let the conditions of Theorem 5 be fulfilled.
Then, the RLES (44) can be characterised by (45), depends
continuously on its input data and is transitive.

Proof The first two properties are covered by Theorem 5 and
Lemma 9. The eigenvectors in (23) can be rotated, such that
the final input data is represented by generic orthonormal
bases. Consequently, this constitutes a special case for input
data with generic orthonormal bases in Proposition 1, which
implies the transitivity. ��

To conclude this section, wewill consider a small example
for the RLES with originally non-generic input data.

Example 3 We calculate the RLES for the input data of
Example 1, namely blue C1 = (0, 0, 1), a medium dark
brown C2 = ( 3

5 ,
2
5 ,

1
5

)
and a shade of blue–magenta C3 =(

1
3 ,

1
3 ,

5
6

)
with X i = λiuiuTi + μiviv

T
i , i = 1, 2, 3, and the

corresponding spectral data

λ1 = 1√
2
≈ 0.7071, μ1 = −λ1,

u1 = 1√
8+ 4

√
3

(−2−√
3

1

)
≈
(−0.9659

0.2588

)
,

v1 = 1√
8− 4

√
3

(
2−√

3
1

)
≈
(−0.2588
−0.9659

)
,

λ2 = 1

5
√
2
≈ 0.1414, μ2 = − 3

5
√
2
≈ −0.4243,

u2 = 1

2

(
1√
3

)
≈
(
0.5000
0.8660

)
,

v2 = 1

2

(−√
3

1

)
≈
(−0.8660

0.5000

)
and

λ3 = 2

3
√
2
≈ 0.4714, μ3 = − 1

3
√
2
≈ −0.2357,

u3 = 1√
8+ 4

√
3

(−2−√
3

1

)
≈
(−0.9659

0.2588

)
,

v3 = 1√
8− 4

√
3

(
2−√

3
1

)
≈
(
0.2588
0.9659

)
.

Since B(X ) is non-generic for X = {X1, X2, X3} because
of X1 and X3, we consider a modified multi-set X (δ) =

{X(δ)
1 , X (δ)

2 , X (δ)
3 } according toDefinition 7, which results by

rotating the corresponding eigenvectors u3, v3 of the matrix
X3 of C3 by δ ∈ (0, π):

X(δ)
1 = X1, X (δ)

2 = X2 and

X(δ)
3 = λ

(δ)
3 u(δ)

3

(
u(δ)
3

)T + μ
(δ)
3 v

(δ)
3

(
v

(δ)
3

)T
.

The components of the spectral decomposition of the rotated
matrix X(δ)

3 are

λ
(δ)
3 = λ3, μ

(δ)
3 = μ3,

u(δ)
3 = 1√

8+ 4
√
3

⎛
⎝
(
−2−√

3
)
cos(δ) − sin(δ)(

−2−√
3
)
sin(δ) + cos(δ)

⎞
⎠ ,

v
(δ)
3 = 1√

8− 4
√
3

⎛
⎝
(
2−√

3
)
cos(δ) − sin(δ)(

2−√
3
)
sin(δ) + cos(δ)

⎞
⎠ .

Due to the generic nature ofB (X (δ)
)
, we obtain for theRLES

according to Theorem 5:

S′ = λ1u1uT1 + λ3v1v
T
1

= 1

12
√
2

(
10+√

3 −1
−1 10−√

3

)

≈
(

0.6913 −0.0589
−0.0589 0.4872

)

which represents in the RGB space a light shade of blue–

magenta colour:
(
5
6 ,

5
6 , 1
)
≈ (0.8333, 0.8333, 1).

6 Conclusion and FutureWork

Building on the work of Burgeth and his co-authors, see [7,
12, 18], we have investigated a characterisation for a pre-
viously unexplored application of the log-exp-supremum,
which was introduced by Maslov [9] as an approximation of
themaximumin convexoptimisation, for colourmorphology.
To do this, we used Burgeth’s and Kleefeld’s [18] bijective
mapping to assign each colour from the RGB colour space a
colour in the formof a symmetric real 2×2matrix in theHCL
bi-cone and used the spectral decomposition of these matri-
ces, theLoewner order and properties of theRayleigh product
to calculate the approximation. In particular, we were able
to show that the LES is transitive according to equation (23)
and, in combination with the dilation, makes it associative in
colour morphology. The latter is a property that is otherwise
only known from binary and grey value morphology and, to
our knowledge, the only multidimensional dilation in colour
morphology with this property.
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Moreover, our findings indicate that while the LES is not
uniquely minimal with respect to the set of upper bounds of
the input data derived from the Loewner ordering, it does,
however, exhibit unique minimality when considered in con-
junction with the intersection of all p-power upper bounds,
as defined in Definition 6. To achieve this, the eigenvalues
and the Rayleigh product of the exponentiated matrices were
employed to eliminate the problematic cases through the limit
as p → ∞.

Finally, we have also addressed one of the biggest down-
sides of the LES, namely the fact that it does not depend
continuously on the input data. However, among other
things, this only applied to non-generic configurations of
the orthonormal bases of the input data, which allowed us to
remove these bymeans of a relaxation of the LES, the RLES.
The input data was changed slightly so that these cases no
longer occurred. This change also meant that not only these
discontinuities were removed, but all discontinuities were
removed without losing the favourable properties of the LES
shown above. Since the duality relationship between dilation
and erosion is also intact in our method, all the properties of
dilation shown here can be transferred to the corresponding
properties of erosion.

In light of these findings, there are several avenues for
further investigation of this method in the future. The most
notable aspect is the significant increase in brightness of the
image. One could compare whether the behaviour is similar
to that of the paper byKahra, Sridhar andBreuSS, see [10]. In
addition, given the paper [25] by Kahra and BreuSS, it seems
possible to find parameters so that these supposed artefacts
disappear from [10]. However, this would likely be a chal-
lenging undertaking. Alternatively, one could also consider
the differences in supremum formation with respect to other
suprema employed in colour morphology, such as the one-
dimensional case or other multidimensional cases, including
the trace supremum [23] or other suprema [8], and compare
them with each other. It should be noted that our method
is not an optimal case and could be replaced by selecting a
colour space other than the HCL bi-cone, such as Lab, in
order to potentially offer additional advantages. The choice
of this space was influenced by its graphically clear geomet-
ric properties.
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