001046472 001__ 1046472
001046472 005__ 20251006201534.0
001046472 0247_ $$2doi$$a10.1016/j.foodhyd.2025.111991
001046472 0247_ $$2ISSN$$a0268-005X
001046472 0247_ $$2ISSN$$a1873-7137
001046472 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03824
001046472 037__ $$aFZJ-2025-03824
001046472 041__ $$aEnglish
001046472 082__ $$a640
001046472 1001_ $$0P:(DE-Juel1)184452$$aSaha, Debasish$$b0$$eCorresponding author
001046472 245__ $$aControlling the Cold-Set Gelation of Bovine Serum Albumin Protein using Alcohol and Ionic Surfactant
001046472 260__ $$aAmsterdam$$bElsevier$$c2026
001046472 3367_ $$2DRIVER$$aarticle
001046472 3367_ $$2DataCite$$aOutput Types/Journal article
001046472 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759752490_27304
001046472 3367_ $$2BibTeX$$aARTICLE
001046472 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046472 3367_ $$00$$2EndNote$$aJournal Article
001046472 520__ $$aHeating of globular protein solutions usually leads to protein denaturation and subsequent gelation at high temperatures. Under “cold gelation”, protein forms a gel at a much lower temperature than its original gelation temperature (TG), which can be achieved by modifying various physicochemical conditions such as the pH of the solution, the presence of salts, etc. In this study, we investigated the cold gelation of Bovine Serum Albumin (BSA) protein induced by ethanol and controlled by ionic surfactant, using small-angle neutron scattering (SANS), dynamic light scattering (DLS), and rheology The results show that the TG of the protein with ethanol is systematically decreased as compared to the that of pure BSA solutions (~80 ◦C), reaching ~60 ◦C at 10 wt% ethanol, ~55 ◦C at 20 wt% and finally as low as ~38 ◦C in presence of 30 wt% ethanol in the solution. Rheo-logical measurements demonstrate a significant strengthening of the gel network, with the enhancement in storage modulus (G′) from ~20 Pa at 0 wt% to ~250 Pa at 30 wt% ethanol. Structural characterization reveals an increase in fractal dimension with rising ethanol content, indicating denser and more branched gel networks. Interestingly, the addition of the anionic surfactant sodium dodecyl sulfate (SDS) inhibits the alcohol-assisted cold gelation of BSA protein, depending upon the relative amount of ethanol and SDS in solution. The results are explained based on the interplay of interactions in the protein, manipulated by the presence of alcohol, elevated temperatures, and ionic surfactant. Our study highlights the tunability of gelation pathways and offers useful inputs for controlled protein gelation in biomaterial and food industry.
001046472 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001046472 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001046472 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046472 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
001046472 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
001046472 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x1
001046472 693__ $$0EXP:(DE-MLZ)NOSPEC-20140101$$5EXP:(DE-MLZ)NOSPEC-20140101$$eNo specific instrument$$x0
001046472 7001_ $$00000-0002-8064-2008$$aKumar, Sugam$$b1$$eCorresponding author
001046472 7001_ $$0P:(DE-Juel1)188158$$aDubey, Purushottam S.$$b2$$ufzj
001046472 7001_ $$00000-0001-9225-7900$$aMata, Jitendra P.$$b3
001046472 7001_ $$00000-0001-8856-3120$$aWhitten, Andrew E.$$b4
001046472 7001_ $$0P:(DE-HGF)0$$aKohlbrecher, Joachim$$b5
001046472 7001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b6
001046472 7001_ $$0P:(DE-HGF)0$$aAswal, Vinod K.$$b7
001046472 773__ $$0PERI:(DE-600)2026957-2$$a10.1016/j.foodhyd.2025.111991$$gp. 111991 -$$p111991$$tFood hydrocolloids$$v172$$x0268-005X$$y2026
001046472 8564_ $$uhttps://juser.fz-juelich.de/record/1046472/files/222.pdf$$yOpenAccess
001046472 909CO $$ooai:juser.fz-juelich.de:1046472$$pdnbdelivery$$popen_access$$popenaire$$pVDB$$pVDB:MLZ$$pdriver
001046472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184452$$aForschungszentrum Jülich$$b0$$kFZJ
001046472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188158$$aForschungszentrum Jülich$$b2$$kFZJ
001046472 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b6$$kFZJ
001046472 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001046472 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001046472 9141_ $$y2025
001046472 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bFOOD HYDROCOLLOID : 2022$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046472 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFOOD HYDROCOLLOID : 2022$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-14
001046472 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-14
001046472 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046472 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-14$$wger
001046472 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-14
001046472 920__ $$lyes
001046472 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001046472 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x1
001046472 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x2
001046472 980__ $$ajournal
001046472 980__ $$aVDB
001046472 980__ $$aUNRESTRICTED
001046472 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001046472 980__ $$aI:(DE-588b)4597118-3
001046472 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001046472 9801_ $$aFullTexts