

The Effect of the Anion Exchange Membrane in the Electrochemical Production of Electrolyte-Free Formic Acid

Sergio Sanz,¹ Konstantin von Foerster,^{1,2} Bastian Rutjens,^{1,2} Henning Weinrich,¹ Bernhard Schmid,¹ Urbain Nzotcha,¹ Hermann Tempel,¹ and R.-A. Eichel^{1,2}

¹Institute of Energy Technologies (IET-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany; ²Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany.

Introduction

The implementation of a closed carbon cycle by 'Power-to-X' (P2X) technologies is of great interest, aiming at a CO₂-neutral economy. Especially, formic acid is a relevant product of P2X processes, since it can be produced selectively and efficiently using earth-abundant catalysts. This study focuses on the investigation of a three-compartment flow cell designed to produce formic acid rather than formate. Herein, the electrolyzer performance using PiperION membranes of various thicknesses, ranging from $13-80 \mu m$, is evaluated. $^{1-3}$

Experimental Setup

Experimental Parameters:

- Active electrode area: 5 cm²
- Flow rate center compartment: 0.1 mL min⁻¹
- CO_2 supply: 60 mL min⁻¹ ($\lambda = 8.0$)
- Flow rate anolyte: 3.0 mL min⁻¹
- AEMs: PiperION (13, 22, 35, and 80 μm)
- CEM: Nafion 324
- GDEs: Custom-made GDEs
- The ion exchange resin in the center compartment allows for the direct production of formic acid

GDE Preparation

Ink preparation

Catalyst: Bi₂O₃ **Binder:** PiperION

Additive: Carbon powder Ultrasonication Dispersion medium: Ethanol

Substrate: TGP-H-120 (30%) Spray-coating Catalyst loading: 4 mg cm⁻²

Cathodic GDE as prepared

Cathodic GDE after electrolysis

Results

Fig.1. Electrolyzer performance in the electroreduction of CO₂ to formic acid as a function of the AEM thickness under continuous operation at 200 mA cm⁻² for 4 hours. a) Average cell voltage, b) average faradaic efficiency of formic acid, H₂, and CO, c) average energy consumption, and d) average concentration of resulting formic acid.

Conclusion

The performance of a three-compartment flow cell for direct formic acid production via CO₂ electroreduction was investigated using PiperION AEMs of 13 μm, 22 μm, 35 μm, and 80 μm thicknesses over 4 hours at 200 mA cm⁻². Among the tested membranes, mediumthick membranes (22 and 35 µm) delivered the best electrolysis performance, achieving ~76% FE_{HCOOH}, an energy consumption of ~6.0 kWh kg⁻¹, and formic acid concentration of \sim 2.3 mol L⁻¹. In contrast, the thinnest membrane (13 µm) yields low faradaic efficiencies to formic acid, and the thickest membrane (80 µm) shows cell voltages above 5 V. This study demonstrates that the appropriate thickness of the membrane is critical to establish an alkaline environment around the cathodic catalyst layer, fundamental for the eCO₂R-to HCOOH.

Acknowledgment: The authors kindly acknowledge funding by the Federal Ministry of Research, Technology, and Space. Projects: iNEW2.0, Inkubator Nachhaltige Elektrochemische Wertschoepfungsketten (funding code: 03SF0627A) and PHOENIX, Launch Space Power-to-X (funding code: 03SF0775A).

[1] H. Yang et al., *J.* CO₂ Util. **2017**, 20, 208.

[2] J. M. Spurgeon et al., Energy Environ. Sci. 2018, 11, 1536.

[3] B. Rutjens et al., Ind. Eng. Chem. Res. 2024, 63, 3986.