001046552 001__ 1046552
001046552 005__ 20250926202046.0
001046552 037__ $$aFZJ-2025-03862
001046552 041__ $$aEnglish
001046552 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$ufzj
001046552 1112_ $$a76th Annual Meeting of the International Society of Electrochemistry$$cMainz$$d2025-09-07 - 2025-09-12$$wGermany
001046552 245__ $$aBattery Material Libraries derived from High Throughput Experimentation and their application in Lithium Batteries
001046552 260__ $$c2025
001046552 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1758892542_774
001046552 3367_ $$033$$2EndNote$$aConference Paper
001046552 3367_ $$2BibTeX$$aINPROCEEDINGS
001046552 3367_ $$2DRIVER$$aconferenceObject
001046552 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001046552 3367_ $$2ORCID$$aOTHER
001046552 520__ $$aOne of the most essential properties of lithium batteries in application is their high energy density, implying high lithium ion storage capabilities in the electrodes. Today’s conventional carbon-based anodes still leave considerable room for improvement. Pure elementary lithium metal, sometimes described as the “Holy Grail” of all lithium anode materials, suffers from huge volume changes during charge/ discharge, and their predisposition to short-circuiting the battery cells during charging by the creation of metallic lithium filaments which completely perfoliate the electrolyte. Silicon is regarded as one of the most promising anode materials in advanced lithium batteries due to its high lithium ion storage capacity, however, also silicon exhibits extensive volume changes during electrochemical cycling. Mixtures of silicon with other elements potentially forming transition metal silicides are under intense investigation as mechanically stable and electronically conductive frameworks, with additional electrochemically active silicon in between. In this work it is shown how deployments derived from high-throughput experimentation allow a deeper insight into the interplay between phase formation, electrochemical performance and proportion of active and inactive material in a battery cell. A holistic approach for the development of material libraries based on materials phase diagrams is presented, allowing a significantly deeper insight into the interaction of ceramic processing technologies, microstructures, crystal phases, and their impact on the electrochemical properties. This work has been supported by the Federal Ministry of Education and Research of Germany through project 03EK3572 (UNIBAT), from the Federal Ministry of Economic Affairs and Climate Action of Germany through project no. 03ETE016F (Optikeralyt) and the Helmholtz Association of German Research Centers for their financial support within the Helmholtz program “MTET: Materials and Technologies for the Energy Transition,” topic “Electrochemical energy storage”.
001046552 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001046552 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001046552 7001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b1$$ufzj
001046552 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b2$$ufzj
001046552 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b3$$ufzj
001046552 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b4$$ufzj
001046552 909CO $$ooai:juser.fz-juelich.de:1046552$$pVDB
001046552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b0$$kFZJ
001046552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich$$b1$$kFZJ
001046552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b2$$kFZJ
001046552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b3$$kFZJ
001046552 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b4$$kFZJ
001046552 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001046552 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001046552 9141_ $$y2025
001046552 920__ $$lyes
001046552 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001046552 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
001046552 980__ $$aabstract
001046552 980__ $$aVDB
001046552 980__ $$aI:(DE-Juel1)IMD-2-20101013
001046552 980__ $$aI:(DE-82)080011_20140620
001046552 980__ $$aUNRESTRICTED