001046645 001__ 1046645
001046645 005__ 20251027202212.0
001046645 020__ $$a978-3-95806-846-9
001046645 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03877
001046645 037__ $$aFZJ-2025-03877
001046645 1001_ $$0P:(DE-HGF)0$$aPinto, Ralstom$$b0$$eCorresponding author
001046645 245__ $$aA constitutive theory to represent non-idealities in contacting of SOC interconnect contacts$$f - 2025-07-29
001046645 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2025
001046645 300__ $$axii, 139
001046645 3367_ $$2DataCite$$aOutput Types/Dissertation
001046645 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
001046645 3367_ $$2ORCID$$aDISSERTATION
001046645 3367_ $$2BibTeX$$aPHDTHESIS
001046645 3367_ $$02$$2EndNote$$aThesis
001046645 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1761565994_28561
001046645 3367_ $$2DRIVER$$adoctoralThesis
001046645 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v673
001046645 502__ $$aDissertation, RWTH Aachen University, 2025$$bDissertation$$cRWTH Aachen University$$d2025
001046645 520__ $$aThe electrical contact resistance at solid oxide cell (SOC) contacts is a key aspect which contributes to ohmic losses in an SOC stack. These resistances are primarily dependent on the mechanical contact pressures applied in the active area, which are influenced by non-idealities caused by manufacturing limitations. Finite element methods (FEM) can be used to study these phenomena, but conventional simulation approaches are often impractical due to excessive computation times. Such excessive computational times are caused by complex designs of repeating components and high mesh resolutions required for accurate modeling. To address these challenges, this work investigates the use of computational homogenization techniques in the SOC stack. These methods characterize the periodically repeating structure of interconnect contacts as an equivalent material response, capturing the required effects while significantly reducing computation time. The non-idealities arising from manufacturing tolerances are incorporated using a constitutive material model demonstrating an offset-formulation, while the soft porous coating on the contacts is represented through a coating-formulation. Furthermore, the model shows temperaturedependent and rate-dependent behavior, making it capable of simulating the various loading stages in the lifecycle of an SOC contact. On developing a simplified modeling approach for the aforementioned challenges, a framework is developed to extrapolate key parameters relevant to SOC performance directly from this simplified model. This motivates the use of the simplified model as a replacement of full-field modeling approaches. The developed modeling framework is validated through experimental case studies, which focus on evaluating the mechanical contact pressure after stacking and also the electrical contact resistance during operation. The findings from this work have important implications for optimizing several process parameters to achieve an ideal contact configuration in the active area of an SOC stack. These parameters may include stacking force, tolerance limits, temperature distribution, material properties and the geometric design of contacts, which can be evaluated efficiently using the proposed computational approach.
001046645 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001046645 8564_ $$uhttps://juser.fz-juelich.de/record/1046645/files/Energie_Umwelt_673.pdf$$yOpenAccess
001046645 909CO $$ooai:juser.fz-juelich.de:1046645$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001046645 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
001046645 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001046645 9141_ $$y2025
001046645 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046645 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046645 920__ $$lyes
001046645 9201_ $$0I:(DE-Juel1)IMD-2-20101013$$kIMD-2$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001046645 980__ $$aphd
001046645 980__ $$aVDB
001046645 980__ $$aUNRESTRICTED
001046645 980__ $$abook
001046645 980__ $$aI:(DE-Juel1)IMD-2-20101013
001046645 9801_ $$aFullTexts