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Abstract

Several influential factors impact pedestrian movement within crowds, making their
analysis complex and challenging. To address this, we employ a simplified system
referred to as single-file. In this system, pedestrians walk along a narrow path with-
out overtaking, ensuring that the order of individuals remains constant. This setup
reduces the number of variables and allows for a focused examination of the specific
factors researchers aim to investigate in pedestrian dynamics. Given the significance
of single-file movement in understanding complex movement behaviors, this thesis
demonstrates the importance of studying single-file systems. Furthermore, this the-
sis analyzes the interaction ranges in single-file systems by incorporating into the
speed model the influence of both the pedestrian ahead and the one behind, taking
into account their respective distances and speeds. This novel approach, detailed in
Publications II and III, enhances the accuracy of modeling in single-file movement.

This cumulative thesis comprises three publications aimed at investigating pedes-
trians’ single-file movement. Publication I provides a comprehensive review of ex-
periments on single-file pedestrian movement, emphasizing its importance. The
review covers the historical background of single-file movement studies and offers
insights from human and non-human traffic systems. The publication also elab-
orates on various experimental setups and data collection methods and discusses
factors influencing pedestrian movement. Additionally, the study introduces a new
Python-based tool, SingleFileMovementAnalysis, designed to analyze the data of
pedestrian movement, particularly head trajectories, which helps prepare and cal-
culate movement quantities such as speed, density, and headway. The publication
offers an approach to experimental data analysis and suggests future directions for
research in this field.

In Publication II, the factors influencing pedestrian movement in single-file exper-
iments are explored. Feed-forward neural networks are utilized to predict individual
pedestrians’ speeds, using various combinations of distances and interaction ranges
with neighboring pedestrians. Therefore, the influence of introducing the distance
behind into the speed model is analyzed, and the predicted individual speeds using
different influential factors are evaluated and compared.

Inspired by the results from the statistical investigations conducted in Publica-
tion II, Publication III introduces a new microscopic speed model that considers
the relative distances to the nearest neighbors both behind and ahead for single-file
movement. A fine-tuning of the weighted asymmetry parameters is applied, and
the stability of the new model is analyzed. Furthermore, a numerical simulation of
one-dimensional movement evaluates the proposed model.






Zusammenfassung

Mehrere Einflussfaktoren wirken sich auf die Bewegung von FuBigingern in Men-
schenmengen aus, was ihre Analyse komplex und schwierig macht. Um dieses Prob-
lem zu losen, verwenden wir ein vereinfachtes System, das als Single-File beze-
ichnet wird. In diesem System gehen die FuBlginger auf einem schmalen Weg,
ohne zu uberholen, so dass die Reihenfolge der Personen konstant bleibt. Dieser
Aufbau reduziert die Anzahl der Variablen und erméglicht eine gezielte Unter-
suchung der spezifischen Faktoren, die die Forscher in der Fuigaingerdynamik un-
tersuchen wollen. Angesichts der Bedeutung der Bewegung in einer Reihe fiir das
Verstandnis komplexer Bewegungsablaufe zeigt diese Arbeit, wie wichtig die Un-
tersuchung von Systemen in einer Reihe ist. Dartiber hinaus werden in dieser
Arbeit die Interaktionsbereiche in Ein-FuBiganger-Systemen analysiert, indem der
Einfluss sowohl des vorausfahrenden als auch des nachfolgenden Fufigangers in das
Geschwindigkeitsmodell einbezogen wird, wobei die jeweiligen Entfernungen und
Geschwindigkeiten berticksichtigt werden. Dieser neuartige Ansatz, der in den Ver-
offentlichungen IT und III detailliert beschrieben wird, erhoht die Genauigkeit der
Modellierung bei einreihigen Bewegungen.

Die vorliegende kumulative Dissertation umfasst drei Publikationen, die sich mit
der Untersuchung von Single-File-Bewegungen von FuBigingern befassen. Publika-
tion I gibt einen umfassenden Uberblick iiber Experimente zur Single-File-Bewegung-
en von Fufigangern und unterstreicht die Bedeutung dieses Forschungsgebiets. Der
Bericht befasst sich mit dem historischen Hintergrund von Studien iiber Single-File-
Bewegungen und bietet Einblicke in menschliche und nicht-menschliche Verkehrssys-
teme. Die Publikation geht auch auf verschiedene Versuchsaufbauten und Datener-
hebungsmethoden ein und erortert Faktoren, die die FuBBgingerbewegungen beein-
flussen. Die Studie stellt auBerdem ein neues Python basiertes Tool, SingleFile Move-
mentAnalysis, vor, welches fiir die Analyse von Fugangerbewegungen, insbesondere
deren Kopftrajektorien, entwickelt wurde. Es unterstiitzt auerdem die Berechnung
von Bewegungsgrofen wie Geschwindigkeit, Dichte und Wegstrecke. Diese Publika-
tion bietet einen Ansatz fiir die experimentelle Datenanalyse und schlagt zukiinftige
Forschungsrichtungen in diesem Bereich vor.

In der Publikation IT werden die Faktoren untersucht, die die Bewegung von
FuBigangern in Single-File-Experimenten beeinflussen. Feed-forward neuronale Netze
werden zur Vorhersage der Geschwindigkeit einzelner FuBganger eingesetzt, wobei
verschiedene Kombinationen von Abstanden und Interaktionsbereichen mit benach-
barten Fugangern verwendet werden. Der Einfluss auf das Geschwindigkeitsmodell
durch die Einfithrung des Abstandes zum hinteren Nachbarn wird analysiert, und
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die vorhergesagten individuellen Geschwindigkeiten werden unter Verwendung von
verschiedenen Einflussfaktoren bewertet und verglichen.

Ausgehend von den Ergebnissen der statistischen Untersuchungen, die in der Pub-
likation IT durchgefiithrt wurden, fithrt die Publikation III ein neues mikroskopis-
ches Geschwindigkeitsmodell ein, das die relativen Entfernungen zu den nachsten
Nachbarn sowohl hinter als auch vor dem Fulgianger fiir die Single-File-Bewegungen
beriicksichtigt. Es wird eine Feinabstimmung der gewichteten Asymmetrieparame-
ter vorgenommen, und die Stabilitat des neuen Modells wird analysiert. Dartiber
hinaus wird das vorgeschlagene Modell durch eine numerische Simulation einer eindi-
mensionalen Bewegung evaluiert.

viii
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CHAPTER 1

Introduction

1.1 Background and Motivation

In events (sports, concerts) and daily commutes (shopping, going to work), peo-
ple move alone, as a group, or in crowds in various environments (inside buildings,
outside buildings). Many influential factors impact their movement, for example,
pedestrian gender [1-3], social conventions [4], external motivations [5-§], etc., and
phenomena can emerge such as stop-and-go waves [9-12], lane formation [13], etc.
These parameters (variables and constants) are complex to analyze together to un-
derstand the impact of each in the movement, especially in the movement inside
two-dimensional space.

The parameters controlling pedestrian movement should be investigated within
a simple system to facilitate understanding the movement in complex situations.
Seyfried et al. [14] introduced a single-file system in pedestrian dynamics that
features pedestrians walking unidirectionally without overtaking, focusing on one-
dimensional (1D) movement and limiting the potential effects that could influence
the fundamental diagrams (FDs). This system is introduced to examine the relation-
ship between density and flow or velocity referred to as the FD, which characterizes
pedestrian movement. To date, approximately forty single-file pedestrian exper-
iments have been conducted for various purposes (as reviewed in Publication I).
These experiments mainly aimed to investigate the impact of various influential fac-
tors in the pedestrian dynamics [1, 2, 6-8] and movement characteristics [14-21]. In
this context, a detailed understanding of the single-file movement is essential.

The significance of studying single-file motion lies in isolating the movement char-
acteristics under investigation to describe relationships, such as the density-speed
relationship. This type of system ignores the influence of pedestrian directional
behavior (in 2D), focusing only on the longitudinal movement direction (in 1D). Al-
though the single-file setup effectively isolates key factors influencing movement and
enables the analysis of simple 1D motion, its applicability to real-world scenarios is
limited. In real situations, movement is often multi-directional, and crowd behaviors
are shaped by a more complex and broader range of factors. Therefore, single-file
movement does not capture the behavior of pedestrians in multi-directional flows or
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the characteristics that emerge in complex crowd dynamics. In such scenarios, pedes-
trians are involved in interactions with obstacles or other groups, and the single-file
system cannot account for behaviors like merging, overtaking, or avoidance tactics.

This cumulative thesis aims to develop a more in-depth understanding of single-file
pedestrian movement through a combination of literature review, empirical analysis,
and modeling. It provides a comprehensive review of single-file movement research,
highlighting methodologies, influential factors, and trends in experimental design
(Publication I). The thesis also introduces a novel approach to analyzing how the
distances between pedestrians influence their speed, utilizing feed-forward neural
networks (FFNN) to extract influential factors without modeling bias (Publica-
tion II). Finally, it introduces the modeling of anisotropic interactions in pedestrian
dynamics by incorporating the distances with both preceding and following neigh-
bors into a microscopic speed model, resulting in improved simulation of stop-and-go
waves and enhanced accuracy in FDs (Publication III).

1.2 Single-file Movement

A single-file system in pedestrian dynamic as defined in the review (Publication I)
is a group of interacting pedestrians walking in a narrow path (physical or virtual),
where individuals are unable to pass each other (rule: no overtaking), and the
order of the pedestrians remains constant throughout the experiment time. This
system aims to examine the basic characteristics of pedestrian movement, including
physical and psychological interactions, and to explore the fundamental relationship
between density-flow and density-velocity (FD). The FD is used to quantify the
capacity of pedestrian facilities, thereby enabling the assessment of escape routes,
facilities capacities, and the evaluation of pedestrian models.

1.2.1 State of Research

This section briefly reviews the literature related to pedestrian single-file movement
experiments and modeling. For a comprehensive review concerning the experimental
research, the reader refers to Publication I. For studies about modeling, refer to the
sections introduction and related work in Publications IT and Publication III.

In the literature on pedestrian single-file, significant progress has been made in
experimental research performed for various purposes. First, exploring movement
quantities (speed, density, flow, etc.) or stepping behavior [14-21]. Second, to vali-
date developed methods for extracting trajectories from video footage [22]. Third,
to assess the effects of possible influential factors (e.g., age, gender, social conven-
tions, motivation with music, etc.) on movement properties. Given the diversity of
experimental research on single-file movement and its significance, a review article
that defines and summarizes existing work on the topic is necessary.

Besides, the simplified system, characterized by unidirectional pedestrian flow
with limited degrees of freedom, has provided critical insights into the relationships
between density, speed, and headway. Previous studies have introduced several
models in terms of the utilized modeling approach. Speed-based models refer to
first-order differential equations where the speed of a pedestrian depends on the
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distances and velocities of the surrounding neighbors [9, 10, 23-26]. Some speed-
based models include the time-to-collision parameter [27, 28]. Others include the
stepping behavior parameters (i.e., step size, number of steps per unit time) [8, 19,
29]. Acceleration-based or force-based models are based on second-order differen-
tial equations which include external forces to derive the speed and position [12,
30-33]. Locomotion models simulate pedestrians by physical step rather than time
step assuming that humans are bipedal creatures who move forward by stepping
alternately with the left and right foot [34]. Cellular automaton, the discrete on-
space models assume that pedestrian transit to a neighbor cell (unit of distance is
cells) [35]. Most existing modeling approaches consider only the headway to the
front, resulting in totally asymmetric interaction models. However, the distance
with the pedestrian behind may also influence the behavior of a pedestrian. More-
over, some research areas remain open for further investigation, particularly in the
application of data-driven approaches to predict speed without introducing modeling
bias, such as through the use of artificial neural networks (ANNs).

This cumulative thesis contributes to these areas by addressing gaps through three
publications. Publication I reviews single-file research across human and non-human
systems, highlighting their methodologies, and influential factors investigated, high-
lighting the trends and the directions of future research in single-file experiments,
and proposing the SingleFileMovementAnalysis tool for consistent data processing
and analyzing movement quantities. Publication II introduces a novel modeling ap-
proach utilizing FFNNs to predict pedestrian speed. Publication IIT improves the
microscopic speed model by introducing the distance with the pedestrian behind,
providing enhanced stop-and-go waves and accuracy in one-dimensional pedestrian
flow simulations. Together, these works establish a methodological framework for
future single-file research, paving the way for new investigations.

1.2.2 Experimental Analysis and Modeling

Performing real single-file movement experiments involves actual environments, and
conditions providing results that directly reflect real-world behaviors. These experi-
ments lead to unexpected observations and emerging phenomena. However, the cost
of performing experiments is higher than that of simulations, involving the costs of
equipment, facilities, hiring people, etc. The availability of datasets and observations
collected from experiments enables the reproduction of real pedestrian behavior us-
ing simulation. In computer simulation, the datasets collected from the experiments
are used to calibrate the model’s parameters and validate the model that describes
pedestrian dynamics. Performing simulations is faster because it can quickly and
easily repeat the same experiment several times. However, the simulation is biased
by the modeler observing the real system and defining the model.

With the availability of datasets from previously executed real experiments, it
can conduct literature, empirical, and modeling analyses to understand and predict
pedestrian dynamics before effectively simulating movement in 1D. In this thesis,
a new approach to exploring influential factors is proposed using single-file exper-
imental data to predict and understand the individual speeds of pedestrians with-
out introducing modeling bias. The novel approach of using ANNs to predict and
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understand single-file pedestrian motion without introducing modeling bias is an
original contribution to the study. As explored in Publication II, the ANNs are used
to approximate the relationship between the distances to pedestrians in front and
behind, and the resulting pedestrian speed, which allows for a more accurate repre-
sentation of real-world dynamics. Unlike traditional models, which typically assume
an anisotropic interaction where the forward distance primarily governs speed, the
ANN-based method captures the influence of the follower’s headway as well. This
isotropic interaction, where both front and behind distances are included, signifi-
cantly enhances the accuracy of speed predictions. Including the follower’s distance
into the prediction model has shown improvements in speed estimation by up to
18% over traditional models. Finally, inspired by the results of Publication II, in
Publication III mathematical modeling is used to describe the speed equation by
introducing the distance behind the pedestrian, which was found to improve the
predictions using the ANN.

1.2.3 Objectives and Methodology

The objective of this dissertation is to deepen the understanding of pedestrian
single-file movement by integrating experimental literature analysis, data-driven ap-
proaches for empirical analysis (feature extraction), and mathematical modeling.
This cumulative thesis systematically investigates the factors influencing pedestrian
dynamics, with a specific emphasis on the anisotropy of interactions by considering
not only the distance to the pedestrian ahead to model the speed but also to the
follower. The thesis combines three interrelated contributions, each investigated in
its respective publication, aligning to develop new methodologies and tools for ex-
tracting factors, analyzing, and modeling single-file pedestrian motion. Figure 1.1
illustrates the structure of the methodology used to achieve the thesis objectives.

Apply feed-
forward neural
networks
IS 3 Modeling

individual nalysis

1.Literature 2 Empirical

Analysis

Analysis

Figure 1.1: The methodology of the cumulative thesis and its published articles.
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The first step in this thesis involves a comprehensive literature review, presented
in Publication I, to establish the theoretical and experimental foundation for this
thesis. The review systematically studies over 48 experimental studies focusing on
single-file movement across human and non-human systems (ants, mice, bicycles,
and cars). It identifies trends, methodologies, and gaps in single-file pedestrian
dynamics while highlighting the significance of single-file systems in understanding
fundamental relationships in pedestrian flow. As part of this contribution, a Python-
based tool, SingleFileMovementAnalysis, is developed to standardize the analysis of
single-file experimental data (the methodology is depicted in Figure 1.2).

Start

Experimental
data files
(trajectories)

Transformation
additional

Y

Transformation
straight

'

Calculate movement
guantities (density, speed,
and headway)

Plot time-density
and time-speed
diagrams
Y

Manually choose [ ]
the steady state
]
Extract the data
samples within
the steady state

Plots
(density-speed,
headway-speed

End

Figure 1.2: Flowchart for calculating movement quantities using head trajectories.

This tool automates the calculation of movement quantities such as speed and
density, ensuring consistency in data processing and visualization, and providing a
foundation for future analytical work. The metadata from ten experiments - includ-
ing 28 publicly available datasets - have been collected and stored to ensure easy and
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rapid accessibility. This enables analysis replication and further research for this the-
sis and other researchers. The analysis tool tested over the 28 datasets comprises oval
setup experiments producing the time-space, density-speed, and headway-speed di-
agrams. These one-dimensional datasets were collected from experiments conducted
under varying conditions to investigate different aspects, including motivation-haste,
stop-and-go waves, age, gender, etc. Head trajectories of pedestrians are available,
enabling the calculation of the distances between the pedestrians and speeds over
time. The resulting calculated movement quantities - density, headway, and speed-
form a foundational dataset for subsequent data-driven and mathematical modeling
in the following steps.

Building on the aforementioned empirical findings, Publication II focuses on a
data-driven approach to predict pedestrian speed. The second step of the thesis
is to apply FFNNs to predict the individual speeds of pedestrians walking in a
single file. A novel approach to explore the influential factors and approximate the
fitting function to describe pedestrians’ movement without having modeling bias.
Distances to both the predecessor and follower are used as input features, with
the individual speed of pedestrians as the target output. We tried different FFNN
structures with one and two hidden layers as follows: (1), (2), (3), (3, 2), (2, 2), (32,
32), and (64), where the expression (x) represent one network with an x number of
hidden layers, and (x, y) represents two hidden layers, with a number x of hidden
neurons in the first layer and a number y of neurons in the second hidden layer.
The defined FFNNs are trained and tested using the experimental data, employing
bootstrap resampling to minimize overfitting and using mean squared error as the
loss function. As a result, the shallow FFNN with two hidden layers outperforms
the other structures minimizing the MSE values (See Figure 1.3).

Bootstrapping
(1000 iterations)

7Y

Pre-process data FFNN
Raw data [ (normalization, change 7| (training, testing)
categorical data to numerical) & g

Figure 1.3: The methodology followed in developing the algorithms for speed prediction.

The third step of the thesis is inspired by the results of the empirical analysis
in Publication III, where the new speed model incorporates the distance to the fol-
lower pedestrian. This microscopic speed model is developed to describe single-file
pedestrian movement by incorporating interactions with both the predecessor and
the follower pedestrians, capturing the anisotropic nature of pedestrian interactions
(see Figure 1.4). Initially, models’ parameters such as desired speed, time gap,
pedestrian size, and asymmetry parameter («) are calibrated using nonlinear least
squares with two experimental datasets. Then, a linear stability analysis of the
model is performed, determining a possible value of the asymmetry parameter in
the model. Finally, numerical simulations are performed which indicate the model’s
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Single-file movement experiments

Observations/
assumptions

Y
Define the mathematical model
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Figure 1.4: Key methodological milestones in the process of defining and evaluating the
proposed pedestrian speed model.

capability to reduce unrealistic backward movements and pedestrian overlaps, re-
sulting in more accurate stop-and-go wave patterns.

In the following chapters, Chapter 2 provides a concise overview of the three pub-
lications constituting this cumulative thesis. Subsequently, Chapter 3 discusses the
obtained results, addresses the limitations of the conducted research, and proposes
potential future investigations.






CHAPTER 2

Summary of Publications

This cumulative thesis consists of three publications: Publication I, Publication II,
and Publication ITI. These publications are included at the end of the thesis. In this
chapter, the research questions and results in the publications are summarized.

2.1 Publication I: Comprehensive Review and New
Analysis Software for Single-file Pedestrian
Experiments

This publication presents a thorough review of single-file experiments in pedestrian
dynamics. This review begins with discussing historical perspectives and highlight-
ing the significance of the single-file movement. It then compares the properties of
human movement to those of non-human entities like ants and mice, providing in-
sights into pedestrian dynamics. A generalized definition of the single-file movement
system is introduced. The review also discusses the experimental setups, data col-
lection methods, and the variables influencing pedestrian movement as investigated
in the literature. The single-file system is important for establishing basic relation-
ships that can contribute to more complex models and simulations in pedestrian
dynamics, such as in crowd management. Additionally, this publication introduces
a Python tool, SingleFileMovementAnalysis, designed to analyze data from these ex-
periments, particularly focusing on pedestrian head trajectories. This software tool
facilitates data analysis in single-file experimental research, enabling researchers to
prepare, calculate, and analyze movement metrics (density, speed, headway) more
efficiently. The paper is structured to guide future research by identifying gaps in
current studies and suggesting directions for further exploration. It emphasizes the
significance of single-file experiments in generating fundamental insights that are
applicable across various pedestrian dynamic systems. Overall, the review serves as
a comprehensive source of knowledge on single-file pedestrian experiments.
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2.2 Publication II: Questioning the Anisotropy of
Pedestrian Dynamics: An Empirical Analysis
with Artificial Neural Networks

The publication explores the influential factors that impact the movement of pedes-
trians in single-file without modeling bias. Artificial neural networks are applied,
namely FFNN to understand the effect of the combination of the distance ranges
on the prediction of the pedestrian’s speeds. The study aims to determine how
distances to preceding and following neighbor pedestrians influence walking speed
rather than the classical models that assume that the interactions mainly depend
on the field of vision in front (anisotropic interactions). The research introduces a
novel approach using FFNNs to empirically analyze pedestrian speed as a function
of headway distances (the combination of the distance to the person directly in front
and behind a pedestrian), without modeling biases. The empirical data for the study
were collected through single-file experiments conducted at the Arab American Uni-
versity in Palestine [2] including homogeneous and heterogeneous gender groups.
The researchers used this data to train and test different structures of FFNNs with
a combination of input features (distance ranges), focusing on their impact on pre-
dicting pedestrian speeds. The study found that including the distance between
the subject pedestrian with the follower and the predecessor improves speed predic-
tion Mean-square error (MSE) accuracy significantly by 18% in comparison to using
only the frontal distance. This suggests that interactions in pedestrian dynamics
are not strictly anisotropic as in classical models, but rather that distances to both
preceding and following pedestrians are important. Moreover, the results indicate
that the influence of the following pedestrian becomes more pronounced in mixed-
gender experiments, suggesting potential variations in pedestrian dynamics based
on gender composition. In conclusion, the introduction of isotropic interactions im-
proves the prediction of pedestrian speed in a single-file experiment compared to
the anisotropic classical models. This insight could have significant implications for
developing more accurate pedestrian dynamic models (similar to real behavior).

2.3 Publication III: Modeling pedestrian single-
file movement: Extending the interaction to
the follower

This publication proposes a microscopic speed model for pedestrian dynamics in one-
dimensional movement. Unlike classical models, which only consider the distance
and relative speed to the pedestrian directly in front, this new model introduces
the interaction with the pedestrian behind, aiming to capture realistic interaction
dynamics. The motivation behind this approach is the statistical investigations in
Publication IT and empirical observations of coordination phenomena in single-file
motion [36]. The model development begins with the conceptualization of pedes-
trian interactions, followed by a mathematical formulation using the Optimal Ve-
locity (OV) model [37], which involves stochastic differential equations to account
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2.3 Publication III: Modeling pedestrian single-file movement: Extending the
interaction to the follower

for the randomness observed in pedestrian movement. This model adjusts interac-
tion dynamics by fine-tuning the weight parameter (the model calibration) through
a least squares method, which minimizes the difference between the observed and
predicted pedestrian speeds. The calibration aims to balance the influences from
the pedestrian ahead and the one behind. Two datasets from single-file experiments
were used for the calibration [1, 2]. Furthermore, the theoretical analysis delves
into the model’s stability. It indicates conditions under which the model remains
realistic and robust. Numerical simulation results show the model’s effectiveness
in replicating realistic pedestrian dynamics. The new model shows fewer backward
movements and pedestrian overlaps than the totally asymmetric model (classical OV
model) making the stop-and-go waves in crowded situations more realistic. More-
over, the proposed fine-tuned model better describes the FD (density-speed) and its
scattering. Overall, this paper makes a significant contribution to the field of pedes-
trian dynamics by introducing pedestrian interactions and extending such models
to more complex scenarios.

11






CHAPTER 3

Discussion and Outlook

This cumulative thesis contains a comprehensive literature review, empirical analy-
sis, and mathematical modeling, to deepen the understanding of single-file dynamics.
The findings obtained from studying the existing literature in Publication I, employ-
ing data-driven methods (Publication II), and improving the mathematical speed
model by incorporating anisotropic interactions (Publication IIT), reveal both the
potential and the limitations of focusing on single-file systems in pedestrian dynam-
ics. In this section, we will discuss the thesis’s key results and limitations, and then
explore potential future directions.

The first manuscript [38] consolidates the existing body of experimental research
in single-file motion and introduces a software tool that supports data preprocess-
ing and analysis. The second manuscript [39] expands this foundation by applying
FFNNs to explore whether pedestrians’ speed depends not only on the distance to
the predecessor but also on the distance to the follower, offering a novel perspec-
tive on isotropic interactions. Finally, the third manuscript [40], inspired by the
aforementioned insights, develops a new mathematical model that incorporates the
distance behind the pedestrian to describe the speed.

The review (in Publication I) defines and highlights the importance of single-
file experiments as a simpler setting for understanding specific influential factors,
movement characteristics, and phenomena. It covered various experimental setups,
data collection methods, and the movement quantities commonly analyzed in such
studies. By comparing human single-file movement with that of non-human enti-
ties like ants, mice, or bicycles, we found both similarities and differences that can
inspire new approaches for modeling and improving pedestrian flow. The Single-
FileMovementAnalysis software aims to standardize and simplify data processing
and visualization. It provides a way for researchers to analyze head trajectories
and compute movement metrics, ensuring that results are consistent and compa-
rable. However, some limitations and open questions remain. For example, the
cognitive and psychological aspects of how pedestrians perceive and react to their
surroundings in a single-file are not fully understood. More research is needed in
this direction. Also, the method of identifying steady-state conditions and defin-
ing them automatically is still an open issue. Moreover, integrating more advanced
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techniques or sensor data can offer deeper insights into the factors influencing the
movement of pedestrians. Furthermore, the analysis tool introduced here can be
expanded to include more geometric configurations and different types of trajectory
data. By addressing these points, researchers can move closer to a more complete
understanding of pedestrian behavior in single-file movement and how it relates to
more complex crowd scenarios.

One of the remarkable results of our research is that incorporating both preceding
and following neighbors improves the prediction of the individual speed, questioning
the assumption that the distance to the pedestrian ahead alone governs movement.
The empirical analysis using FFNNs suggests that pedestrians might respond, at
least indirectly, to closeness from behind. However, the underlying explanation
and causes remain uncertain. Integrating other types of data-driven methods and
advanced statistical approaches could help explain the causes.

Furthermore, by incorporating the interaction with the follower into the optimal
velocity model (in Publication IIT), we aimed to achieve a more realistic representa-
tion of pedestrian dynamics, particularly in high-density conditions. Compared to
the classical, totally asymmetric approach, the proposed model shows in the sim-
ulation reduction in the backward movements, decreases the overlaps, and better
reproduces the FD and its scattering. As a result, the simulated stop-and-go waves
appear more realistic and closer to what is observed in real experiments. However,
some aspects remain open for further investigation. Understanding the underlying
reasons behind the influence of the interaction with the follower is still needed. For
example, does this effect result from direct perception through vision or other senses,
or does it emerge from more complex behavioral mechanisms? Future studies could
include controlled experiments to verify how pedestrians perceive and react to their
neighbors behind.

From the perspective of future research, several promising directions emerge. Ex-
perimentally, deeper analyses of pedestrians’ perception and cognition could develop
an understanding of pedestrian movement. Furthermore, the SingleFileMovement-
Analysis tool [38], established in the first manuscript, can be readily extended and
adapted to handle new geometries, data formats, or richer trajectory information
(e.g., footstep-level data or three-dimensional body measurements). On the mod-
eling side, experimental and empirical analysis should be performed to understand
the possible causes of the isotropic interaction. Besides, additional evaluation in
terms of validation and verification to assess the model’s overall performance should
be in future work. Also, the proposed asymmetric microscopic model should be
benchmarked against various models found in the literature.

In conclusion, while single-file systems appear to reduce pedestrian movement to
its most basic form, this research demonstrates that even these simple arrangements
contain a wealth of hidden complexity. Such progress will not only deepen the
theoretical understanding of how people move in single-file but will also open the
door to broader, more meaningful applications. As these insights transition from
theoretical models to practical strategies, they can improve how we understand,
manage, and design crowded environments in the real world.
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Abstract

This paper offers a comprehensive examination of single-file experiments within the
field of pedestrian dynamics, providing a review from both theoretical and analyti-
cal perspectives. It begins by tracing the historical context of single-file movement
studies in pedestrian dynamics. The significance of understanding the fundamental
relationships between density, speed, and flow in pedestrian dynamics is explored
through the lens of simple single-file systems. Furthermore, we examine various
traffic systems involving human or non-human entities such as ants, mice, bicycles,
and cars, and provide insights. We explore the types of experimental setups, data
collection methods, and factors that influence pedestrian movement. We also define
and explain the common concepts related to single-file movement, particularly in
experimental research. Finally, we present a Python tool named “SingleFileMove-
mentAnalysis” designed for analyzing single-file experimental data, specifically head
trajectories. This tool provides a unified approach for computing movement metrics
like speed, density, and headway. The article aims to stimulate further research and
underscore the areas where future researchers can contribute to the advancement
and improvement of single-file studies.

Keywords: Single-file Movement, Single-file Motion, Single-File Flow, Pedestrian
Dynamics, Fundamental Diagram, Experiment, Software

1 Introduction

In their seminal work, Seyfried et al. [1] present the concept of single-file move-
ment in pedestrian dynamics to explore the relationship between density, flow, and
mean velocity, also known as the fundamental diagrams, within pedestrian traffic.
The fundamental diagram quantifies the capacity of pedestrian facilities, allowing
the assessment of escape routes and the evaluation of pedestrian models. To assess
dependence on the fundamental diagram, Seyfried et al. investigate experiments
of single-file movement, where pedestrians walk unidirectionally along a line with
reduced degrees of freedom. This restricts the possible factors that influence the
fundamental diagram. In 2009, Chattaraj et al. [2] replicated the same experiment

20



1 Introduction

in India [1], with the main aim of analyzing the cultural influence (social conven-
tions) on pedestrians’ movement. The motivation behind performing single-file ex-
periments, as pointed out by Chattaraj et al., is that the density-speed relation is
influenced by multiple factors that are still not completely understood. In general,
the importance of studying single-file movement can be traced back to the open ques-
tions: Which factors influence the fundamental relationships? What are the possible
movement quantities that describe the walking characteristics of pedestrians?

Over the past decade, several experiments have been conducted to explore single-
file movement. The objective of these experiments is to identify basic relationships
within a system using a minimal number of variables and parameters. In these ex-
periments, researchers typically set up a controlled environment in which pedestrians
are asked to walk through a narrow corridor without overtaking. Figures I.1(a) and
I.1(b) show the publication trends over the years and countries/territories, respec-
tively. The surge in publications in recent years shows a rising interest in single-file

5

21

20

Number of publications

1 40 A 46 el 3
13“"“1““ -lpﬁa“lp -lp\\"‘a'a -l_a\""l'“ -lp‘\"ﬂ'a 1(!‘1-“‘1@

0 10 20 30 40
Years Number of publications
(a) Publications by year. (b) Publications by country,/territory (based on

the affiliation of the authors).

Figure 1: The number of publications that mentions single-file movement pedestrian
dynamics or single-file motion pedestrian dynamics, according to a Scopus search on 29

March 2024.

movement in pedestrian dynamics. However, it is worth noting that the terminology
single-file movement pedestrian dynamics or single-file motion pedestrian dynamics
is a relatively recent concept that, until now, has not been well-established (see
the number of publications in Figure I.1(a)). We can divide the research focus of
publications on single-file movement in pedestrian dynamics into four main topics:
experiments, data analysis, modeling, and experiments with models (see Figure 2).

Given the importance of single-file experimental research, conducting a compre-
hensive literature review is essential to identify the gaps in previous studies and
outline directions for future research. Xue et al. [3] examine and compare pedes-
trian single-file experiments from a modeling perspective. They compare the basic
characteristics of pedestrian movement in the literature. Their work covers methods
for measurement, data extraction, stepping behavior quantities, influential factors,
and simulations of single-file pedestrian flow. Still, a more in-depth review, focusing
on the details of the experiments from a data analytical viewpoint, is required. In
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this work, we explore various traffic systems, including humans, mice, ants, bicycles,
and cars, to identify similarities and differences that can improve pedestrian dynam-
ics. Furthermore, we define different pedestrian single-file systems and discuss their
types. We characterize the types of experimental setups and identify factors that
influence movement, along with discussion. Moreover, we propose a methodology
for preparing trajectory data and calculating movement quantities using an open-
source Python tool called “SingleFileMovementAnalysis” [4], which is essential for
enabling future research to build on.

The subsequent sections of this paper are structured as follows. In Section 2, we
explore the single-file traffic systems available in the literature and provide com-
parative insights. Additionally, we characterize single-file pedestrian systems. In
Section 3, we review the single-file experiments in the literature focusing on the
type of setups. In Sections 4, we explore the data collection methods adopted and
the movement quantities investigated in the single-file experimental research. In
Section 6, the factors influencing pedestrian movement are identified and studied.
In Section 7, we propose a methodology for preparing trajectory data, computing in
a systematic way movement quantities and present a Python software tool to analyze
single-file movement data. Finally, in Sections 8 and 9, we provide a summary of
the findings, identify trends and open issues, and suggest future research directions.

O Experiments

OData analysis

O Modeling

OExperiments & modeling

13 %

Figure 2: The percentage distribution of single-file movement publications in pedestrian
dynamics across various subjects, from the literature reviewed for this paper.

2 Exploring Single-File Traffic Systems: Defini-
tion and Comparative Insights

Several single-file experiments have been conducted to investigate human move-
ment [1, 2, 5-41]. After reviewing the literature above, we define the single-file
pedestrian system, following the general definition of a system as described by Back-
lund et al. [42], as a group of interacting pedestrians walking in a narrow path
(physical or virtual path [22]), where individuals cannot pass each other (rule: no
overtaking). The order of the pedestrians remains constant throughout the experi-
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ment. In this context, the system aims to question the basic elements of pedestrian
movement, including physical and psychological interactions.

The single-file system can be a closed system or an open system. In a closed sys-
tem, pedestrian movement is influenced by elements within the system. Whereas
in an open system, the surroundings can influence pedestrian movement. The term
“surroundings” refers to the environment adjacent to the area of interest. For ex-
ample, when pedestrians leave the predefined system boundaries and interact with
the external environment. Further explanation of the open and closed single-file
systems is described in Section 3. Having defined the pedestrian single-file system,
this section aims to identify similarities between human and non-human single-file
systems. We examine the basic principles of movement that govern these systems
and identify possible movement similarities.

Exploring other single-file systems involving non-human entities offers valuable
insights into understanding movement properties and relations in these systems.
For example, studying the adaptive behaviors of ants and mice, and observing the
movement of bicycles, and cars in response to movement stimuli (obstacles, other
nearby entities, etc.) can inspire innovative modeling or crowd management ap-
proaches. Table 3 in Appendix A summarizes all single-file experiments reviewed in
this article for various traffic systems.

Many non-human single-file systems, such as those observed in insects and rodents
within animal societies, have been explored in the literature [43, 44]. Both systems
(mice and ants) show that speed decreases with increasing density and exhibit a
piecewise linear relationship between headway distance and speed, similar to the
human system. However, scattered data points are observed in these relationships.
The researchers attribute this primarily to random pauses. For example, Xiao et
al. [43] find that at all densities, mice stop under various circumstances, including
spontaneous pauses, space constraints, and tail effects (when a mouse stops or re-
treats after being touched by the tail of another). Similarly, Wang et al. [44] observe
that ants exhibit random pauses during their experiments. Unlike in human sys-
tems, stopping occurs at high densities only when insufficient space is available to
move forward [45].

Another difference is that mice and ants do not maintain personal space while
walking, resulting in increased speed and flow at high densities. For instance, in
the experiment with mice, the flow remains almost constant at high densities (non-
dimensional density above 0.4) because the mice tend to make contact and move on
top of each other, a behavior we refer to as overlapping. Like in experiments with
ants, behaviors such as touching and moving backward are observed. Unlike the
human system, where flow and speed decrease at high densities because pedestrians
maintain some distance to avoid collisions and touching others. We recognize that
differences in movement can be attributed to the dissimilar physical attributes (i.e.,
body size and shape), cognition, and decision-making processes of humans and non-
human beings. However, we assume that touching and pausing behavior helps to
gain insight into improving flow in high densities (short headway distances less than
personal space).

Another group of single-file systems studied in the literature is vehicular sys-
tems. Research on vehicular single-file movement shows good agreement between
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studies regarding the relationship between certain movement quantities [46], such
as the density-flow and density-speed. However, vehicles such as bicycles [14, 46,
47] and both human-driven and autonomous cars [48-51], are machines controlled
by humans. This indicates that the movement of these vehicles is systematic and
dominated by the physical constraints on the car, such as inertia and limitations
on possible acceleration. We assume that investigating vehicular systems helps us
understand how humans make decisions to control vehicles, addressing three main
concerns: following instructions, avoiding collisions, and ensuring safety. Thus,
the benefits of studying pedestrian dynamics from studying vehicular traffic can be
linked to understanding cognitive processes. The differences and similarities in the
motion properties among single-file traffic systems (such as pedestrians, mice, ants,
bicycles, and cars) are summarized in Table 1.

Table 1: Comparison of movement characteristics among different single-file traffic sys-

tems.
Sensitivity
Traffic K'eep FD dlstan(':e Overlap Pauses/stopping | Backward
distance | in front in | behav- .
system | . . . behavior movement
in front | controlling ior
the speed
Yes, Rarely  (when
Stop-and-go someone
Human TESPECtl Sensitive Does not waves at high | unintentionally
Eszzzm O | densities collides  with
the proceeding)
At all densities
(spontaneous
Mice No Not sensitive Occurs pauses because of | -
space constraints,
and tail effects)
Occurs (despite
.- the large dis-
Ants No Not sensitive Occurs Short pauses .
tance available
in front)
Yes, keep
distance Stop-and-go-
Bicycles | to avoid | Sensitive Does not wavl::e_s a,% high | Does not occur
potential ocent densities
collisions
Yes, keep
distance Stop-and-go-
Cars to avoid | Sensitive Does not wavl::e_s a,% high | Does not occur
potential ocent densities
collisions
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3 Types of Experimental Setups

This section reviews the setup configurations and discusses their distinct features
of single-file experiments involving pedestrians. We also present previously studied
setup types in the literature and provide some insights.

Experimental studies on pedestrians’ single-file movement have been performed
in various shapes/types of setups (see Figure 3): oval [1, 2, 5, 6, 8, 11-13, 17, 19, 21,
25, 26, 28, 29, 32-34, 38, 39, 41], circle [7, 9, 10, 14, 16, 22, 24, 32, stairs [15, 35, 36],
one-dimensional observation area [22, 27, 31], square with four straight corridors and
four arcs [40], rectangle [30], rectangle with four straight corridors and four arcs [23],
ship corridor [20], branch [37], seat aisle [18], flood [52].
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Figure 3: Ilustrations of the experimental setups for different evacuation scenarios: (A)
Oval (B) Circle (C) Stairs (D) One-dimensional observation area (E) Square with four
straight corridors and four arcs (F) Rectangle (G) Rectangle with four straight corridors

and four arcs (H) Ship corridor (I) Branch (J) Seat aisle (K) Flood.

We observe that the selection of the shape/type of the experimental setup is
contingent upon the evacuation scenario the authors intend to investigate. After
reviewing the literature, we categorize single-file experiments into five evacuation
scenarios based on the evacuation facility under study: flood (moving in water),
stairs, ships, seat aisles, and ground level (in general).

Here, we provide a brief overview of the relevant literature on the evacuation
scenario in flood, stairs, ship corridors, and seat aisles. Li et al. [52] investigate
the effectiveness of different formations for evacuating pedestrians during a flood.
The authors perform experiments with a pool, using a single-file system at two
specific water depths (0.35 m and 0.60 m), and compare the efficiency of evacua-
tions with and without a rescue rope. The study finds that using a rescue rope
in single-file formation during flood evacuations significantly reduces pedestrian fa-
tigue and increases speed, particularly in higher water depths. In the investigation
of stair evacuation, Chen et al. [15] conducted experiments exploring the movement
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characteristics of pedestrians ascending and descending stairways. The results show
that descending stairs is faster than ascending, as pedestrians benefit from grav-
ity during descent, whereas ascent requires more effort, resulting in slower speeds.
Furthermore, the speed in stairways described by the number of steps in the longitu-
dinal direction. Wang et al. [35] further investigate the impact of stair configuration
and explore the influence of stair dimensions on pedestrian movement characteris-
tics. The authors find that the stair configuration, particularly tread depth and riser
height, significantly affects pedestrian movement speed, with steeper stairs leading
to reduced walking speed. Ye et al. [36] compare pedestrian movement under mo-
tivation (fast walking) with normal walking. The results show that pedestrians on
stairs move faster when motivated (fast walking condition), with descending move-
ments being quicker than ascending ones, and that motivation increases velocity
correlation between adjacent pedestrians.

Shifting the focus to evacuation in ship corridors, Sun et al. [20] design a simula-
tor for ship corridors to explore the impact of trim (ship’s tilt along its length) and
heeling (ship’s tilt to one side) on walking characteristics. The results indicate that
the trim and heeling angles affect the pedestrian walking speed, with trim angles
having a greater impact than heeling. Lastly, for seat aisle evacuations, Huang et
al. [18] explore the effects of inactive pedestrians (non-moving), and aisle width’s
impact on pedestrian dynamics. They find that in narrow seat aisles, pedestrian
walking speed increases as aisle width increases up to 0.40 m, after which it stabi-
lizes, and that interactions with inactive pedestrians can significantly slow down the
flow, particularly in narrower aisles. While the studies above offer valuable perspec-
tives on single-file movement, our research aims to narrow the focus to ground-level
experiments.

In ground-level experiments, various shapes/types of setups are explored. We di-
vide them into two groups depending on the boundary conditions under which the
experiment is conducted: open (open system) or closed boundary conditions (closed
system). Experiments under open boundary conditions include setups with open en-
trances so pedestrians can enter and leave during the experiment. Examples include
branch and one-dimensional observation areas. Lian et al. [37] employ a branch setup
in which pedestrian streams from two entrances converge into a single main chan-
nel to reach the exit. The authors aim to explore pedestrian movement properties
through single-file merging experiments, varying merging angles and inflow rates.
In the one-dimensional observation area, Appert-Rolland et al. [22] conducted uni-
directional experiments to investigate collective and individual decisions in walking.
In other words, they study how pedestrians adapt their trajectories and velocities
while walking freely in a group of people, rather than moving within a fixed density
of pedestrians. During the experiments, pedestrians move along a fixed straight line
across the facility, one after the other, following a leader who walks at either their
free velocity or a prescribed low velocity.

Huang et al. [27] performed a one-dimensional observation area experiment to
analyze the impact of luggage on pedestrian flow at traffic terminals. Participants
are instructed to imitate walking in a terminal by following the queue while passing
through the observation area. Wang et al. [31] also conduct a one-dimensional
observation area experiment to study knee and hand crawling evacuations in fire
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accidents. Participants pass through a narrow channel divided into two parts: an
upright walking area and a knee and crawling area, allowing the investigation of
the sole movement characteristics of pedestrians and their movement properties
under an increasing inflow at the channel’s entrance. In the aforementioned studies,
we observe that the authors opted for an open-boundary setup because they are
interested in monitoring inflow and outflow as experimental setups.

In experiments under closed boundary conditions, the configuration is enclosed,
enabling pedestrians to move within the setup without exiting during the experi-
ment. Examples include an oval, circle, rectangle, a rectangle with four straight
corridors and four arcs, and a square with four straight corridors and four arcs.
The most commonly explored shape/type is the oval; approximately 52% oval from
the total single-file experiments reviewed for this article (for all evacuation scenar-
ios). Seyfried et al. [1] are the first researchers who introduce the oval setup for
pedestrian’s single-file experiments. The authors explain that the oval setup, sim-
ilar to the one in [53], limits the number of test objects in the experimental setup
and achieves high density without boundary effects. Besides, implementing circular
guiding of the passageway gives periodic boundary conditions.

Experiments involving single-file movement in a circle shape or type constitute
approximately 19% of the total single-file experiments. The initial research adopting
the circle shape in single-file experiments is done by Jezbera et al. [7]. Subsequent
studies have continued to perform circle experiments [9, 10, 14, 16, 22, 24, 32]. None
of the researchers explicitly state the rationale behind choosing the circle over the
oval configuration. Jezbera et al. [7] merely state that they chose a geometry allowing
pedestrians to walk in a single line without overtaking, to perform experiments at
various pedestrian densities, and to operate in closed boundary conditions. After
reviewing the literature in oval and circle shapes, we summarize the main purpose
of the experiments as presented in Table 2.

In ground-level experiments under closed boundary conditions, few researchers
study single-file movement using the following setup shapes/types: a rectangle, a
rectangle with four straight corridors and four arcs, and a square with four straight
corridors and four arcs. Wang et al. [30] investigate the movement characteristics
of pedestrians during the deceleration phase. The experimental setup employs a
rectangular configuration; the rationale behind using a rectangular shape is not
explicitly stated. This configuration consists of two horizontal and longitudinal
paths. The authors emphasize the significance of understanding the deceleration
phase in real-life scenarios, where pedestrians slow down to avoid collisions when
their predecessors suddenly come to a stop. The focus of Wang et al.’s article
is on examining different stop-distance commands: normal stop and close stop,
for two types of walking speeds, namely normal and fast walking. Cao et al. [23]
investigate the influence of the pedestrian’s visibility on the movement properties in a
rectangle with four straight corridors and four arcs setup. The authors perform three
types of experiments under limited visibility: 0.3% (partial visibility), 0.1% (partial
visibility), and 0.0% (no visibility) light transmissions. The shape of the setup has
four straight corridors with three arcs built with longitudinal walls. These long walls
serve as boundaries to ensure that participants remain within the experimental setup
while walking with limited visibility.
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Table 2: Summary of the objectives of oval and circular single-file experiments.

Main Objective Focuses References
Distances between pedestrians 7
. Density-speed relationship 1
Investigate Instantaneous velocity and spatial headway | [10]
movement . .
characteristics or REI‘.la.tIOI'lSh..lp —
behavior Microscopic =~ movement  characteristics | [11]
(density-speed, lateral sway, step frequency,
headway distances, and speed-headway
distances)
Stepping behavior (step length, step dura- | [19, 34, 54]
tion, stepping synchronization, step extent,
and contact buffer)
Movement in high-density conditions 24
Influence of bottlenecks on pedestrian flow 55
Validate data Trajectories of pedestrians’ heads 6]
extraction methods
Rhythm 9, 16]
Instructions (walking decisions in crowds) 22]
Social conventions and location 2, 41]
Effect of influential Age 12, 25]
factors Gender 26, 39, 56]
Background music 28]
Height constraints 29
Social distancing measures 33
Compare traffic Cars vs. bicycles vs. pedestrians 14
systems
Compare data sources Experiments vs. field studies 17
Compare setup Oval vs. circle 32
shapes

From reviewing the ground-level experiments, we observe that the selection of
open or closed shapes/types depends on the goal of limiting the number of pedes-
trians inside the experimental setup and achieving high density without encoun-
tering boundary effects. Additionally, it depends primarily on the purpose of the
experiment. For example, Lian et al. [37] aims to investigate the effect of complex
structures (pedestrians merging on branching walking paths) on the properties of
pedestrian movement. Another experiment by Seyfried et al. [1], where they exe-
cute an oval setup to analyze the simple system of pedestrians walking at different
densities and without boundary effect. However, some researchers do not explicitly
state the reason for choosing the shape/type of the experimental setup, but we can
deduce it based on the experimental information and details provided.

In summary, we offer valuable insights and recommendations derived from a com-
prehensive review of the literature on the shapes of setups and experimental settings.
We recommend having fewer variables in the experimental settings. That empha-
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sizes isolating undesired effects from the surrounding environment, including exter-
nal sounds, weather changes, and light changes. Any variation in the experiments
can impact the way pedestrians walk. Some research already examines the potential
effect of the setup configuration (oval and circle) on pedestrian movement [1, 8, 32].
The oval setup consists of two straight parts and two curvatures, whereas the circu-
lar setup is entirely composed of a continuous curve. Seyfried et al. [1] consider the
possible influence of the curve part of the oval setup. To avoid this effect, they widen
the width of the corridor in the curves, and a measurement section is selected in the
center of the straight part of the passageway. However, we assume that limiting the
investigation only to the straight part will neglect the characteristics that could be
explored in the entire walking path. To avoid the previous issue, Ziemer et al. [13]
proposes transforming the oval trajectories into straight trajectories. In this case,
the investigation of all trajectories is applicable.

From observing some oval experimental videos, we notice that the navigation
between the two parts (straight and curved) could be responsible for a change in
walking behavior because the pedestrian turns at the beginning of the curve. The
study of [13] already assumes the potential influence and compares the fundamental
diagram relationship (density-speed) of the straight and curved parts. They use
the Kolmogorov-Smirnov test to determine whether two data sets in the density-
speed relationship have the same distribution. The results show that the difference
between the straight and curved parts can be neglected.

Fu et al. [32] have another opinion about the possible influence of the curve. The
authors examine the impact of curvature by comparing oval and circular pedestrian
experiments while keeping settings like path circumference, participant number,
methods to extract trajectories, movement direction, and measurement techniques
constant. They find that pedestrian flow in the straight part of the oval setup is
20% higher than in the curved part of both setups. This difference is attributed
to a more heterogeneous distribution on straight paths, allowing efficient space use
and increased flow, whereas curvature leads to a more homogeneous distribution
and reduced density. Additionally, at high global densities, the mean instantaneous
density is higher in the oval passage than in the circular one. The curvature effect
causes differences in pedestrian distribution and decreases density. These findings
highlight significant differences in movement characteristics between oval and circu-
lar setups. Therefore, we advise researchers studying experiments involving curves
to either standardize turning angles for experiments that aim to compare or use
experiments with similar shapes.

4 Data Collection

This section provides an overview of the data collection processes for pedestrians’
single-file experiments conducted under closed-boundary conditions. This section
does not explore the devices suitable for data collection in achieving the experiment
objectives. However, we provide an overview of the data collection processes in
the literature, the data types, and the devices used to collect data from single-file
experiments. For more details, we refer to Table 4 in Appendix B

We define data collection in single-file experiments as a systematic process for
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collecting and processing data to investigate the characteristics of pedestrian motion.
Several data collection processes are followed depending on the data type, devices,
and methods used for data collection. The process mainly includes the following
steps: installing the devices to collect data (i.e., capturing videos and detecting
brain signals) and processing the data (e.g., extracting head positions by detecting
pedestrians’ heads and tracking them throughout the experiment duration). Based
on the experiments we review, the data collection processes can be categorized into
two groups:

1. Semi-automatic data collection: combines both manual and automatic
processes. In other words, some tasks or functions in the data collection
processes are automated, while others require human intervention. For in-
stance, Chattaraj et al. [2] use a digital camera to capture the experiments
and manually extract the data frames of participants entering/exiting from
the measurement area by observing the videos.

2. Automatic data collection: all processes are fully automated. The only
involvement of humans is to verify and manually adjust the results from the
system. For example, Paetzke et al. [39] capture the whole experiment us-
ing a digital camera and then detect and extract pedestrians’ heads using
PeTrack [57] software.

The first step in the data collection involves employing the appropriate devices
to collect data required for the investigation. In single-file experiments, various
devices are installed to collect data and differ in the type of data they measure (see
Figure 4).

|Gender| |Age| |Height| |Weight| |Country|
) ) ) ) )

| Pedestrian meta-data |
Number of
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Figure 4: The data types presented in the single-file movement articles (under closed-
boundary conditions) from the literature in this article.

The primary focus of most experiments is to capture pedestrians’ positions over
time through head trajectories [5, 6, 11-14, 19, 21-26, 28-30, 32, 33, 39, 40, 58],
which is significant for calculating movement quantities such as speed, density, and
headway distances. Cameras are the predominant devices used to collect head tra-
jectories. The cameras capture video footage, enabling the extraction of trajectories
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by detecting and tracking the positions throughout the experiment execution. This
results in 2D or 3D positions over time. Various types of cameras are utilized for this
purpose. The most commonly used are the digital cameras to capture the experi-
ment from a side-view [1, 5, 38] or bird’s-eye view [6, 11-14, 19, 21, 23, 25, 28-30, 32,
33, 37, 39, 58]. The former condition (side-view) is recommended when the roof of
the experimental hall is not high enough to locate the camera perpendicular to the
setup, or if the researchers are interested in observing the movement characteristics
from the side view. Whereas, the latter condition (bird’s-eye view) provides the data
of the overall periodic movement of all pedestrians inside the entire setup. Other
types of cameras used rarely in the experiments include Stereo Vision camera [1],
UAV drone camera [24], infrared camera [10, 22], and Camcorders device. [34].

More types of data are extracted from video footage. Thompson et al. [38] collect
trajectories of shoulders, hips, knees, tips of the toes, and heels to analyze stepping
behavior. Furthermore, time instances of entry/exit to/from a specified measure-
ment area are recorded to calculate the density in [1, 2, 5, 17, 41]. Other devices are
less commonly used in the literature for extracting movement data, such as the light
gate [7] detect each pedestrian’s crossing time at a designated spatial point, ultra-
small near-infrared spectroscopy (NIRS) device [16] to measure frontopolar/brain
activity signals, and Ultra- Wideband (UWB) to collect pedestrians’ trajectories by
utilizing tag signals combined with the location coordinates of the base station [40].
After reviewing the literature, we include that the selection of data collection devices
depends on the types of data one aims to measure or record to investigate quan-
tities related to movement. Besides, this choice is influenced by the researchers’
preferences, which are shaped by the availability of both experience and financial
resources to explore and implement new, specialized devices.

The second step for collecting data involves the processing of the collected data. 1t
includes extracting the data of interest from collected raw data (i.e., video footage)
and preparing the data for usage. One of the most common processing steps for video
footage is the extraction of pedestrians’ head trajectories over the experimental
duration. To achieve this, the process begins by detecting individuals’ heads or
markers in the initial frame and then tracks their positions in subsequent frames. In
addition to the videos, there are other data types, such as pedestrian information
stored in an ID marker [39]. Several methods employed in the literature to process
the data, such as manual observation of the videos [1, 17, 41], applying image
processing techniques based on the mean-shift algorithm [19, 23, 33, 37|, Tracker
software [24], and PeTrack software [5, 12, 21, 25, 26, 28-30, 32, 39]. PeTrack [57]
is the widely used open-source software in the literature because it is specialized
software for calibrating, recognizing, and tracking pedestrians and is available online
for free. Based on our literature review, we conclude that the data processing varies
depending on the utilization of collected data in the investigation (i.e., calculating
movement quantities using pedestrian positions).

5 Movement Quantities

After collecting the data, the quantities that characterize pedestrian dynamics are
calculated. The researchers use these quantities to quantitatively analyze pedestrian
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dynamics. In this section, we narrow the focus to the research on ground-level
experiments conducted under closed boundary conditions. We discuss the quantities
and the methodologies employed.

We can categorize the movement quantities in the literature into four groups
based on their focus on different aspects of human behavior: quantities to describe
head movement (to represent pedestrian movement) [1, 2, 6-8, 10, 12-14, 17, 22—
26, 29, 30, 32, 33, 39, 41, 55, 56, 58|, stepping locomotion [9, 19, 21, 34, 38, 54],
both (head movement, stepping locomotion) [11, 28], and cognitive behavior (using
brain signals) [16]. Here, we focus the review on the research that analyzes head
movement.

Different methodologies are employed in the literature to calculate movement
quantities. These methodologies vary according to the objectives of the analyses.
The first aspect is the level of movement to describe, including microscopic [12,
13, 26, 30, 31, 33, 37, 39] and macroscopic levels [1, 2, 28, 41]. At the micro-
scopic level, the movement properties of each pedestrian are investigated during
the experiment. At the macroscopic level, the motion characteristics of a group
of pedestrians are studied throughout the experiment and averaged over time or
space. Jelic et al. [10] qualitatively analyze the influence of different measurement
procedures—macroscopic and microscopic—which they refer to as global and lo-
cal measurements, respectively. Comparing the density—speed diagrams from both
measurements reveals very similar results at low densities (approximately less than
1.2 m~1). At higher densities (when stop-and-go waves appear), the results of both
measurements differ. Ren et al. [25] find that both macroscopic and microscopic
level measurements reveal similar trends in density-speed diagrams but with dif-
ferent levels of resolution. The microscopic level measurements provide finer detail,
particularly at higher densities, where localized fluctuations in speed and density be-
come pronounced. We observe from reviewing the literature that using macroscopic
measurements, where the movement quantities are averaged for multiple pedestri-
ans, ignores the individual movement characteristics. Further quantitative research
is needed to compare the disparities in the results from various measurement proce-
dures in single-file experiments. Previous studies show that different measurement
procedures produce varying density-speed relations [59]. However, these findings
are based on studies of crowds in straight corridors and T-junction experiments, not
on single-file movements.

The second aspect is the setup area that the measurements cover. Studies focus
on either the measurement area (a predefined part of the experimental setup) [2, 23,
26, 28, 29, 32, 33, 39, 41], or the entire setup path (applying a linear transforma-
tion or 2D calculations) [12, 13, 25, 28]. Upon reviewing the literature, we notice
that calculating movement quantities for a specific part of the setup is simpler. It
is simple because there is no need to transform the trajectories when analyzing
longitudinal movement (along the x-axis). Instead, the equations for calculating
quantities are applied directly to that area. We discuss this further in Section 7.
However, analyzing pedestrian movement across the entire setup enables observing
phenomena like stop-and-go waves that require complete trajectories [13].

The third aspect is the dimension for calculating movement quantities: one di-
mension or two dimensions. Most studies focus on the 1D movement because the
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researchers are interested in studying the longitudinal interactions among pedestri-
ans walking in single-file experiments. Only Fu et al. [32] calculate the speed and
density in 2D in the circle experiments without reporting why they used the 2D
measurements. Yet, no single-file research compare the analysis results using 1D
and 2D measurements. Using data from Paetzke et al. [39] experiments, we plot the
speed-density relation to observe the differences between 1D and 2D measurements
(using the tool in Section 7). We disregard comparing density in one and two dimen-
sions because the 2D density values are equivalent to the 1D values plus a constant.
As we see in Figure 5, the volume of speed in 2D is larger than 1D, because the
magnitude of the speed in 2D is inherently greater than 1D. The significance of this
difference can be further investigated, depending on quantitative analysis and the
objective of the experiment (i.e., is the lateral displacement of the head important
for the research?).
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Figure 5: Speed-density relation using 1D and 2D measurements of the speed.

The fourth aspect concerns the phase of movement chosen for analysis. In single-
file experiments, Chattaraj et al. [2] identify three distinct phases of movement:
acceleration, during which pedestrians start walking and their speed increases grad-
ually; steady state, where their speed remains relatively stable; and deceleration, in
which individuals gradually reduce their speed until they leave the setup or stop.
Most studies focus on investigating movement characteristics during the steady
state, except Wang et al. [30]. In the latter, the authors study how people slow
down when walking in single-file to better understand their behavior during sudden
stops [30]. The author’s motivation for conducting this study is to enhance evac-
uation plans, prevent collisions, and ensure safety during emergencies. We believe
that analyzing the data from a steady state allows gaining valuable insights into
system behavior while simplifying the analysis. However, we assume it is essential
to recognize the limitations of steady-state analysis and consider transient effects
when necessary for a comprehensive understanding of pedestrian dynamic systems.

Finally, we summarize an artifact related to the calculation of movement quanti-
ties that influence single-file movement analysis as reported in the literature. Jelic et
al. [10] demonstrate that the number of detected markers during data extraction af-
fects the analysis. Some pedestrians’ head markers are occluded in the experimental
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videos resulting in the loss of their head trajectories during specific time intervals.
Jelic et al. compare the density-speed relationship using different numbers of de-
tected markers and find that data points for all marker quantities mostly overlap.
Additionally, density values are higher with fewer detected markers because den-
sity calculations include distances between pedestrians and their predecessors and
followers. Hidden predecessors or followers not included in the trajectories increase
these distances. We recommend that the position and numbers of detected markers
match the real experiment’s precision to avoid inaccuracies in the analysis.

6 Factors that influence movements

Various factors can be examined in pedestrians’ single-file experiments (see Fig-
ure 7). In this section, we focus on discussing the influential factors already investi-
gate on the ground-level evacuation scenario under closed-boundary conditions. We
categorize these factors and discuss their influence on the characteristics of pedes-
trian movement.

Analyzing the impact of various influential factors is essential for modelers simu-
lating pedestrian movement and for event organizers to implement safety procedures.
To understand pedestrian walking behavior, we thoroughly explore potential factors
and their impact on movement quantities, such as speed changes and flow variations.
Analyzing these factors helps uncover correlations and causal relationships between
variables, which are important for defining movement.

By observing experimental videos, participating in experiments, reviewing rele-
vant literature, and conducting research on diverse aspects of single-file movement,
we categorize these influential factors into three main groups based on their sources
(see Figure 6):

e Personal attributes such as age, gender, etc.

e Cognitive factors involve mental processes and knowledge acquisition through
thoughts, experience, and the senses, i.e., route choice, and motivation.

e Social factors including interactions with other pedestrians.

e Environmental factors including physical characteristics and layout of the
experiment where individuals move and interact, such as location, weather,
lighting conditions, etc.

We define social conventions as a set of agreed-upon or generally accepted stan-
dards and social norms that a group of people follows. These conventions influence
walking behavior, as observed by Chattaraj et al. [2] in their pioneering research
comparing young German and Indian participants. They conduct quantitative and
qualitative analyses of the free-flow speed, density-speed, and speed-headway rela-
tions of Indian and German experiments. The results show that German walking
speed is more dependent on density than Indian speed, with Indian data exhibiting
greater fluctuations in speed and density (unordered behavior). Germans maintain
greater personal space (headway distance) than Indians. Furthermore, both groups
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have similar free-flow speeds when walking alone. Bilintoh et al. [41] also examine so-
cial conventions by studying the locations of compatriots in single-file experiments
conducted in Ghana and China with African students. They compare movement
characteristics such as density, speed, flow, and headway. Their analysis reveals
that Ghanaian pedestrians (speed between 0.74 £0.01 m/s and 0.32 + 0.02 m/s)
walk slower than the African students in China (speed between 1.11 + 0.01 m/s and
0.31 + 0.03 m/s) at the same global densities of 0.62 m~! and 0.95 m~!, respectively.
Additionally, Ghanaians maintain smaller personal space than African students in
China based on headway distances.

1. Cognitive factors 2. Social factors

» e

4. Pedestrian’s
characteristics or
properties

A
3. Environmental factors

Figure 6: Main groups of factors that Influence movement in single-file experiments as
proposed by the authors

Age and gender are personal attributes influencing movement. Ren et al. [25] and
Cao et al. [12] investigate the age effect on pedestrian dynamic. Cao et al. conduct
a comparative analysis of homogeneous and heterogeneous age groups, including
youth (16-18 years, average age 17), old adults (45-73 years, average age 52), and
mixed groups (youth and elders randomly ordered). In contrast, Ren et al. focus
on elders aged 50-85 years, with an average age of 70. Cao et al. find that young
students move faster than old adults in the speed-density relationship. At the same
density, the young group is faster than the mixed group. The mixed group’s speed
is slightly lower than that of the old adults’ group at densities between 0.5 m~! and
1.2 m™!, while it is higher at densities below 0.5 m™'. Additionally, flow increases
monotonically with density for all groups but reaches different peak flows: 1.3 s!
for youth, 0.9 s~ for old adults, and 0.7 s~! for mixed groups around a density of
0.9 m~!. Ren et al. compare the speeds of elders and old adults, finding that the
elders walk slower than the adults in the low-density scenarios but at roughly the
same speed in the mixed group. Furthermore, stop-and-go waves occur frequently
and last for a longer duration in the elderly group compared to the old adult group.
The authors observe from the experiment videos, time-space diagrams, and headway
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values that some elders wait several seconds until they have a certain sufficient
distance in front to move again. Elders do not resume walking synchronously with
the preceding pedestrian after stopping, a phenomenon they term “active cease”.
We attribute these differences in movement to the physical mobility capabilities of
pedestrians.

In gender studies, Subaih et al. [56] and Paetzke et al. [39] explore the impact
of gender composition on pedestrian movement. While their objectives are similar,
their contributions and findings differ. Both studies use statistical analyses to as-
sess the significance of their findings with different testing methods. They find that
homogeneous gender groups (either all female or all male) exhibit similar density-
speed relationships. Subaih et al. observe differences in the density-speed diagram
between homogeneous and heterogeneous (mixed-ordered) gender groups, suggesting
that the gender of neighboring pedestrians affects movement. In contrast, Paetzke et
al. expand the analysis to various group compositions and find that gender compo-
sition effects on speed-density relations are either nonexistent or only present within
a narrow density range. They attribute these discrepancies to different statistical
methods and data preparation. Furthermore, Paetzke et al. investigate additional
factors like weight, height, and the gender of the preceding pedestrian but conclude
that these factors do not significantly improve the predictability of pedestrian speed.
This reinforces that gender composition and these additional factors have minimal
impact on pedestrian dynamics in single-file movement.

Some influential factors are controlled or manipulated to observe their effects on
the experimental results (motivation). For example, organizers use instructions,
music, and environmental changes to assess their impact on participants’ behavior
and walking patterns. Lu et al. [33] investigate pedestrian movement under differ-
ent social distancing measures similar to those during COVID-19 in China: 1 m,
2 m, and normal conditions (before COVID-19). They find that social distancing
measures caused participants to maintain greater distances than normal conditions,
though some violations occurred. Stop-and-go waves under social distancing mea-
sures are observed not only at high densities but also at low-density ranges. We
suppose the reason is that pedestrians prefer to stay alert and maintain the prede-
fined distance to follow the instructions. Thus, they stop to estimate and adjust
the distance headway before proceeding. Wang et al. [30] investigate the effect of
stop distances by instructing participants to either stop close to or normally behind
their predecessors. The close-stop condition results in shorter average stop distances
(0.34 m) compared to normal stops (0.63 m). Additionally, the speed-distance head-
way slope is steeper in close-stop experiments, indicating more abrupt deceleration
as participants approach the person in front.

Appert-Rolland et al. [22] study the cognitive processes of pedestrians, focusing
on how increased freedom of movement affects pattern formation, interaction, and
decision-making in crowds using a single-file system. In their experiments, partici-
pants are instructed to walk in a self-chosen virtual circle without predefined bound-
aries. Consequently, participants form circular paths by following and interacting
with their predecessors (following behavior).

Another group of researchers focuses on the influence of music, songs, and metronome
rhythm on pedestrian motion. They hypothesize that music and rhythm enhance

36



6 Factors that influence movements

pedestrian flow in congested situations without causing danger. Zeng et al. [28] per-
form an oval experiment to understand the impact of background music on move-
ment. Seven experiments are performed: three with different music tempos, three
with rhythms from a metronome device, and one without music (normal conditions).
The authors only analyze and compare the movement under normal conditions and
with music at 120 beats per minute (BPM). The analysis of density-speed and
density-flow shows that at the medium and high densities investigated, speed and
flow are lower with background music than under normal conditions. Stop-and-go
waves appear in both cases at a global density of pgq, = 1.82 m~!, but with back-
ground music participants stop frequently and for a longer duration.

In studying the impact of metronome rhythm, Yanagisawa et al. [9], Ikeda et
al. [16], and Li et al. [40] conduct experiments with different types of setups with
and without a rhythm of 70 BPM. Yanagisawa et al. use experimental data to val-
idate their pedestrian flow model, which combines two primary parameters: step
size and walking pace (steps per unit time). Their results indicate that the slower
walking rhythm can enhance pedestrian flow in congested environments. This im-
provement occurs because pedestrians maintain a more consistent pace and avoid
abrupt reductions in step size, which is observed in the experimental data. Specifi-
cally, the slow rhythm helps synchronize pedestrian movement, reducing variability
and improving flow at high densities.

Ikeda et al. analyze the impact of steady beats on the cognitive processes of
pedestrians by measuring participants’ frontopolar brain activity in walking and
stepping groups. They find that playing a steady beat sound (like a metronome)
helps groups walk together more smoothly in crowded situations and improves the
coordination between their brain activities, particularly in the prefrontal region.
The aforementioned research on music and metronome rhythms demonstrates that
pedestrian flow can be improved by music and rhythm, which influence stepping
behavior and cognitive processes.

There are also Environmental factors that significantly impact pedestrian move-
ment, as demonstrated by various studies. Cao et al. [23] investigate the movement
under various visibility conditions by testing three levels of light transmission (0.3%,
0.1%, and 0.0%). The study show that pedestrian speed and flow change signifi-
cantly with different visibility conditions. Specifically, the following behavior (to-
ward proceeding pedestrians or the walls) is observed at light transmissions of 0.1%
and 0.0%. Additionally, stop-and-go waves appear at low densities and increased
as visibility decreased. The maximum specific flow rates vary with visibility, be-
ing 1.3 s71, 1.15 571, and 0.9 s7! for light transmissions of 0.3%, 0.1%, and 0.0%,
respectively.

Chattaraj et al. [2] investigate the influence of corridor length and found no signif-
icant impact on speed-density or speed-headway distance relations. Jelic et al. [10]
analyze how the walking path -either along the inner wall or the outer wall of a
circular setup- affects pedestrian movement. The authors observe that pedestrians
maintain a slightly greater distance from the wall when walking along the outer
path compared to the inner path. Furthermore, they find no significant differences
in density-speed relations between the two paths.

Ren et al. [25] explore the effects of vertical walls in various experimental setups,
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observing different pedestrian behaviors based on wall presence. They examine three
cases: case one with a wall on one side of a straight section, case two with walls
on both sides of a straight section, and case three with no walls in curved sections.
Pedestrians in case one tend to walk away from the wall towards the open side, while
movements in case two are less fluctuating and more concentrated compared to cases
one and three. In case three, fluctuations are more frequent, and pedestrians often
crossed boundaries, especially at high densities, leading to overlapping. The study
concludes that boundary types, whether vertical walls or ground tape, significantly
affect pedestrian movement characteristics. Ren et al. [25] also observe the influence
of the setup shape on the speed of pedestrians (straight and curved). This influence
is further analyzed by Fu et al. [32], where the authors find that pedestrian flow
increases in the straight part (oval experiments) than the flow in the curve part
(discussed before in Section 3).

Ma et al. [29] conduct experiments to understand the impact of height constraints
(1.0 m, 1.2 m, 1.4 m, 1.6 m, and 2.0 m) on pedestrian movement. The authors
find that speed distributions across different heights follow a Gaussian pattern, with
lower height constraints significantly reducing pedestrian speeds and altering the
flow. In conclusion, experimental settings such as visibility, corridor length, walking
path, boundaries, setup shape, and height constraints significantly affect pedestrian
movement analysis. These factors should be carefully considered in the analysis and
interpretation of results.
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7 Methodology for Preparing Trajectory Data and
Calculating Movement Quantities

From reviewing the literature, we notice that various studies employ different codes
and tools to analyze experiments. These differences stem from diverse experimental
setups and settings. We analyze data from multiple studies to ensure a compre-
hensive understanding, i.e., comparing the one-dimensional and two-dimensional
measurements discussed in Section 5. We identify the need for foundational soft-
ware for single-file experiments that researchers can build upon. This software is
open-source and available online, enabling developers to systematically analyze ex-
periments across different settings. The tool serves as a standardized approach for
data analysis. Furthermore, it provides a foundation for future development, allow-
ing other researchers to enhance its capabilities by adding new features.

Experimental
data files
(trajectories)

Transformation
additional

Calculate movement
quantities (density, speed,
and headway)

Plot time-density
and time-speed
diagrams

Manually choose
the steady state
Extract the data
samples within
the steady state

Plots
(density-speed,
headway-speed

Figure 8: Flowchart for calculating movement quantities using head trajectories.

In this section, we introduce a Python tool for analyzing single-file experiments.
We also propose a methodology for preparing experimental data (head trajectories),
calculating movement quantities, and analyzing the common relations investigated
in the single-file literature: density-speed and density-headway. To qualitatively
and quantitatively analyze the single-file movement by using head trajectories, we
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7 Methodology for Preparing Trajectory Data and Calculating Movement
Quantities

propose the methodology outlined in the flowchart presented in Figure 3 to prepare
the raw data and calculate movement quantities.

The first two steps in the methodology for preparing the raw trajectory data are
transformation additional and transformation straight. Upon observing the plots
of raw trajectories in the literature, we notice that the (z,y) values are centered
around different points, depending on the trajectory extraction process (location of
the coordination system). To convert oval trajectories into straight - a process we
refer to as the “transformation straight” step, following the method of Ziemer et
al. [13] - we adjust the trajectories to a new, unified Cartesian coordinate system,

T:R2 5 R? (”) — (")
y y'

In this system, trajectories represent a person starting her/his walk from the
beginning of the bottom straight corridor (z = 0), along the corridor’s central
line (y = 0) (Sub-figure 1.9(b) show the new coordination system). Additional
transformation is achieved by applying appropriate transformations in geometry,
such as rotation, shifting, etc (see Sub-figures 1.9(a) transform to 1.9(c)).

Some common cases for additional transformation are summarized as follows:

1. In some experiments, the (z,y) coordinates are given in centimeters. We
convert them to meters by setting the unit conversion factor u as follows:
if the original units are in centimeters, then v = 100 to convert to meters;
otherwise, u = 1.

2. To ensure the straight segments of the oval setup are parallel to the x-axis,
rotate the trajectories by 90° clockwise, transforming (z,y) — (y, —z), or 90°
anticlockwise, transforming (z,y) — (—y,z). For experiments, pedestrians
walk either clockwise or anticlockwise. In clockwise experiments, apply hori-
zontal reflection to calculate distances, setting constraints i = —1 and j = —1
for axis reflections; otherwise, set i = 1 and j = 1.

3. To align the origin with the middle line of the corridor, as shown in Sub-
figure 1.9(b), we need to shift the trajectories horizontally or vertically. For
horizontal and vertical translations, we use the constants k € R and d € R,
respectively.

The additional transformation equations T are:

i.T

M 1
T u+ (1)
,Jy

_4Y .4 2
y=""" (2)

In case we want to calculate the movement quantities for pedestrians walking
inside a specific area (the straight part), we need to extract (z,y) values from within
the space interval of the measurement area, (z,y) € [a,b], where a € R and b € R
represent the minimum and maximum x-axis values, respectively.
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x [m]

(¢) Transformation additional.

y [m]

-2 . . .
-2.5 0.0 2.5 5.0

x [m]

(b) Sketch of the new coordination system.

0 5

x [m]

(d) Transformation straight.

Figure 9: The steps of the transformation applied to the trajectory data extracted from

the single-file experiment.

g

To apply transformation straight, T' : R? — R2, (I ) — (I ), the equations

are defined as follows:

4

T
"
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7 Methodology for Preparing Trajectory Data and Calculating Movement
Quantities

and

Vy—r)3?—r 0<z<y,
Y'=¢Vz—02+(@y—r2—r x> L, 4)
v+ (y—r)2—r z <0,

where £ represents the length of the straight segment of the oval corridor, and r
denotes the radius of the curved part (see Figure 1.9(b)).

The third step of the methodology involves calculating the movement quantities.
In our paper, we calculate Voronoi 1D density, individual instantaneous speed, and
headway distance. To calculate the headway distance, we apply the following equa-
tion:

Tit1 t —.'L‘gt i=1,...,n—1,
m):{ (t) - z:(t) 6

(¢ — za(t)) + z4(2) i=n.

where n is the number of pedestrians in the experiment and ¢ is the geometry
circumference.

Voronoi 1D density is defined as:

(6)

2 hi_i(z)  hi(z)
hi_y(z)+hi(z &’,‘E[ 2 2 [?
pi(x) = § PTG :
Otherwise.
Finally, we calculate the individual instantaneous speeds of pedestrians using the
following equation for side-view erperiments or analysis within a specific measure-
ment area:

:!:i(t+At/2)g.ti(t—.&t/2) t+ At/? < tend: t— At/2 > tstart-;

t

Ti(tseare)—zi(t—At/2)
w(t) = | s b+ AL/2> tena, £ — AY/2 2 Tar, )
% - T Atf2)—xi(ten,
w t+At/25tend: t_At/z <tstart?

0 otherwise,

where . and t.q are the time when the pedestrian i enters and leaves the mea-
surement area, respectively. The short time constant of At = 0.4 s (10 frames) is
used to smooth trajectories and avoid fluctuations in the stepping behavior of pedes-
trians. For the top-view experiments, Equation 7 (case one) is used to calculate the
1D individual instantaneous speeds. In 2D, the speed is calculated by dividing the
displacement in 2D by At as follows:

V (@it + At/2) — zi(t — At/2))2 + (ui(t + At/2) — yi(t — At/2))?
At '

vi(t) = (8)

For more details regarding the proposed analysis tool, check the GitHub project
SingleFileMovementAnalysis [4]. The tool is tested across 10 experiments involving
28 datasets, as detailed in Appendix C, Table 5.
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8 Summary, trends and future outlooks

In this section, we highlight the trends and the directions of future research in
single-file experiments.

In single-file systems (discussed in Section 2), cars and bicycles are influenced
by mechanical effects and inertia. This leads to systematic speed control and the
maintenance of space to prevent collisions, especially in traffic jams. In contrast,
animals such as mice and ants do not maintain personal space or time gaps and
often overlap, pause randomly, and even move backward, resulting in higher flow
at crowded densities. Pedestrians, like vehicles, maintain personal space, but like
animals, their movements are flexible. At high densities, people slow down to avoid
contact, creating stop-and-go patterns driven by psychological and physiological
factors. These differences should be confirmed by further experiments.

In analyzing pedestrian movement, there is a clear consensus regarding the choice
of experimental setups as reviewed in Section 3. Closed systems are preferred for
investigating the fundamental diagram, as they provide controlled conditions that
eliminate external boundary effects and control the density. In contrast, open sys-
tems are valuable for examining external influences, such as pedestrians’ streams
from different directions or decision-making in movement (i.e., direction to take, fol-
lowing behavior), which are critical in real-world scenarios. However, the influence
of boundaries in these setups remains an area that requires further investigation.
Understanding how boundary conditions affect pedestrian dynamics can enhance
our comprehension of movement.

Data collection in pedestrian studies is develop to become more comprehensive,
incorporating surveys that gather meta-data about pedestrians, such as demographic
details and socio-psychological contexts. This trend reflects a growing recognition of
the importance of understanding not only the physical movement of individuals but
also the factors influencing their behavior. Furthermore, automation through tools
like PeTrack has significantly advanced the precision of head trajectory extraction
from videos, allowing for a more detailed analysis of pedestrian movement. Different
types of data are extracted by Thompson et al. [38] such as the trajectories of
shoulders, hips, knees, tips of the toes, and heels to improve the calculation of
stepping quantities. By integrating this additional information, researchers can
gain deeper insights into pedestrian dynamics and the various influences that shape
movement in different environments. A new technologies to capture, track and
analyze pedestrian steps, such as step extent and step frequency is required. In
the literature, the measurements of stepping behavior are mostly analyzed using
the head trajectories. This will enable researchers to improve accuracy and reduce
errors in the analysis.

In Section 6, we discuss several factors that influence pedestrian dynamics which
have already been investigated in the literature, categorizing them into personal at-
tributes (age, gender), cognitive factors (route choice and motivation), social factors
(interactions with others), and environmental factors (visibility and layout). Each
of these factors significantly impacts, or does not, movement characteristics such
as speed and flow, highlighting the complexity of pedestrian behavior. There is a
growing interest in research examining the effects of rhythm and music on move-
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ment to improve the flow of pedestrians in congested situations. The researches [9,
16, 28, 40] highlight how the rhythm and music influence the fundamental diagram
and the pedestrian behavior. Investigating how varying tempos affect coordination
and flow in different environments may provide valuable insights into optimizing
pedestrian movement, particularly in crowded settings where synchronization can
enhance safety and efficiency. Future research could also explore the effect of the
surrounding environment (indoor or outdoor) on pedestrian dynamics. Addition-
ally, investigating the impact of emerging technologies, such as wearable devices
that provide real-time data on movement, could further enhance our understanding
of pedestrian dynamics. Finally, focusing on factors such as the role of individ-
ual cognitive processes and socio-psychological factors in pedestrian behavior. For
example, how individuals feel under different motivations (e.g., evacuation, noise,
rhythm) and how these factors influence their decision-making. More suggested
factors are highlighted in Figure 7.

9 Conclusion

This article comprehensively reviews the literature on single-file pedestrian move-
ment, with a focus on experiments and data analysis. We provide a scientific back-
ground and discuss the significance of single-file experiments in pedestrian dynamics.
Then, we compare different traffic systems - including humans, mice, rats, bicycles,
and cars - to highlight their similarities and differences. From this comparison,
we derive insights that contribute to our understanding of pedestrian dynamics.
Furthermore, we present a detailed discussion and categorization of the types of
experimental setups, data collection methods, movement quantities, and influen-
tial factors of the movement, and provide our discussion. Finally, we propose a
methodology and introduce the “SingleFileMovementAnalysis” tool for analyzing
single-file pedestrian dynamics. After the comprehensive review, we recognize the
ongoing need for further research in single-file movement. Specifically, experimental
research focuses on the cognition processes of moving pedestrians to understand the
related factors influencing the dynamics. We also suggest conducting research con-
cerning defining and automating the steady-state in pedestrian single-file movement.
Moreover, we encourage further experiments to investigate new influential factors
and validate new data collection devices. There is still room for improvement in
research on pedestrian single-file movement to compare experimental data against
existing research objectively and easily, thereby improving the quality of analysis.
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C Collected experimental data for testing the proposed analysis tool
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Abstract

Identifying the factors that control the dynamics of pedestrians is a crucial step
towards modeling and building various pedestrian-oriented simulation systems. In
this article, we empirically explore the influential factors that control the single-
file movement of pedestrians and their impact. Our goal in this context is to apply
feed-forward neural networks to predict and understand the individual speeds for dif-
ferent densities of pedestrians. With artificial neural networks, we can approximate
the fitting function that describes pedestrians’ movement without having modeling
bias. Our analysis is focused on the distances and range of interactions across neigh-
boring pedestrians. As indicated by previous researches, we find that the speed of
pedestrians depends on the distance to the predecessor. Yet, in contrast to classical
purely anisotropic approaches - that are based on vision fields and assume that the
interaction mainly depends on the distance in front - our results demonstrate that
the distance to the follower also significantly influences the movement. Using the
distance to the follower combined with the subject pedestrian’s headway distance to
predict the speed improves the estimation by 18% compared to the prediction using
the space in front alone.

Keywords: Artificial Neural Networks, Pedestrian Dynamics, Distance Headway,
Single-file movement, Interaction Range, Modeling

1 Introduction

For the sake of safe mass events, comfortable and efficient transport infrastructures,
for example airports, many works are dedicated to understanding the laws govern-
ing crowd dynamics. In the last years, the number of empirical studies increased
significantly, which led to gaining more insights into the movement of people. Ad-
ditionally, these insights often offer useful criteria that validate models and evaluate
the simulacrum of reality they create.

70



2 Related Work

Trustworthy models are valuable tools that shed lights on unknown aspects of
crowds and allow assessing and investigating new design and planning measures.
However, most known modeling approaches make implicit assumptions on the way
people move and interact with their environment. Cellular automata, for instance,
assume that a pedestrians’ motile behavior is determined by chemotaxis [1]. Another
popular modeling Ansatz describes the crowd by differential equations; assuming
constructed functions such as algebraic [2] or exponential [3] Newtonian forces that
compactly describe the systems’ evolution. It is worth to mention that in [4] the
interaction energy between pedestrians was measured from field observations and
not assumed.

Based solely on experimental evidence, in this work, we isolate the factors that
influence the interactions between pedestrians in single-file movement. Contrary to
the usual synergy between experimental and numerical investigations of pedestrian
dynamics, where the former validates the latter, we try, through neural networks,
to “extract” from empirical data the most relevant dependencies that determine the
movement of pedestrians. Furthermore, classical pedestrian interaction models are
anisotropic, assuming that people in front influence the dynamics more than peo-
ple behind. For instance, most force-based models include vision field mechanisms
affecting a weight depending on the bearing angle in the motion direction [2, 3, 5,
6]. This hypothesis, despite the reasonable limits of human perception and notions
of fields of vision, is in most cases assumed a priori without statistical evidence. In
this article, we analyze the interaction range in the single-file movement, including
isotropic symmetric interaction models based on the distance to pedestrians behind
as well. Recently, Artificial Neural Networks have been used successfully to estimate
the speed of pedestrians in different complex geometries [7]. They allow identifying
(with no modeling bias) which variables are relevant to the pedestrian by analyz-
ing prediction errors. In this context, We investigate several factors influencing the
dynamics, namely the interaction range with pedestrians in front and behind, and
the isotropic nature of the pedestrian dynamics. Hereby, we focus our analysis on
the influence of the distance to the follower, predecessor, and second predecessor
pedestrian on the prediction of the subject pedestrian speed.

The rest of this article is organized as follows. In Section 2, we review and
discuss several approaches proposed by researchers to predict pedestrians’ movement
characteristics using different methods and techniques. Then, in Section 3, the
single-file movement experimental dataset is introduced and the data pre-processing
methodology is described. Section 4 presents the structure of the artificial neural
networks applied to investigate pedestrians’ movement influential factors to predict
future speeds. In Section 5 the speed prediction results using different input features
are discussed. Finally, we summarize the article, make conclusions, and propose
future works in Section 6.

2 Related Work

Recently, more attention has been given to studying the influential factors that
control the dynamics of pedestrians in closed and open environments [8-13]. Under-
standing such factors can help in modeling complex pedestrians’ movement. When
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dealing with complex systems, such as pedestrian dynamics, scientists generate nu-
merous models based on different approaches, variables, and parameters [14]. For
instance, force-based models (see [15] for a review) assume that pedestrians’ devia-
tion from their intended trajectories can be explained by external forces. Another
Ansatz by Karamouzas et al. [4] follows a statistical-mechanical approach to measure
the interaction energy between pedestrians based on the time to a potential future
collision (time-to-collision). Tordeux et al. [16] introduce the walking time-gap as a
parameter to model the pedestrian’s movement. Van den Berg et al. [17] propose
a model based on optimal collision-avoidance techniques to describe the movement
of pedestrians in two-dimensional space. Another model, the Linear Trajectory
Avoidance (LTA) model, introduced by Pellegrini et al. [18] takes into account both
simple scene information in the form of destinations or desired directions and in-
teractions between different pedestrians. Cellular Automaton model proposed by
Schadschneider et al. [1] is inspired by the chemotaxis process, which ants use for
communication. This discrete on-space model assumes that pedestrian transition to
neighbor cell probability varies dynamically and is not constant. Thus, this model
modifies the transition probabilities by considering the nearest-neighbor interactions
to determine pedestrian’s transition to the next state. The aforementioned classical
models are anisotropic, i.e. they assume that pedestrians interact with people in
their vision field, and this interaction is reduced with the people behind. For in-
stance, most force-based models include a vision field affecting a weight depending
on the bearing angle #;; [2, 3, 5, 6]. In the centrifugal and generalized centrifugal
force model [2, 6], the weight is

cos(8y) if |9;] < 7/2
0:;) = . 1
w(0:) { 0 otherwise @)

In the original social force model [3], the weight is

1 if |9§j| <
¢ otherwise

where g is the angle of sight while 0 < ¢ < 1 is a reduced perception factor. Extended
social force models use the weight [5]
ws(8i) = N+ (1 — ,\i)H#S(B‘J), X~ 0.75 (3)
Such mechanisms make the motion behavior highly anisotropic. For single-file mo-
tion, it may even induce the interaction model strictly anisotropic (i.e., depending
solely on the distances in front). In this article, we analyze the interaction range
in the single-file movement, including isotropic symmetric interaction models based
on the distance to pedestrians behind as well. Furthermore, all previously discussed
models introduce equations that provide a template for a large but tightly linked
family of models. However, sometimes the choice of certain qualitative functions
remains not justified, nor is it backed by empirical knowledge of pedestrian dynam-
ics. Moreover, classical models have a bias that emerges from their form, which has
restricted degrees of freedom. That means each model can be controlled by a few
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specific parameters inherent to the form of the model. The prediction quality usu-
ally depends on the pertinence of the model’s form defined to describe pedestrians’
movements.

Recently, many researchers proposed human trajectory prediction algorithms [19]
arguing that neural networks have high flexibility and are devoid of any model-
ing bias. For example, Alahi et al. [13] develop the Social LSTM (S-LSTM) al-
gorithm to predict the future trajectories of pedestrians depending on their past
positions and the interactions with their neighbors. To model the social interac-
tion, Alahi uses a social-pooling layer to allow sharing each neighboring pedestrians’
LSTM hidden state to predict subject pedestrian’s future positions. Alahi et al.
algorithm improved the prediction of the next position approximately by a fac-
tor of 21% compared to the force-based model (SF) [3]. Xue et al. [20] develop
a trajectory-prediction algorithm, called the Bi-prediction algorithm, based on the
S-LSTM considering the importance of pedestrians’ intended destinations in predict-
ing their future trajectories. This two-stage prediction model employs bidirectional
LSTM architecture to forecast multiple possible trajectories with different proba-
bilities in the scene. In another research [21], the authors propose the MX-LSTM
model, which adds to the previous models a new variable (direction of the pedestrian
head) to improve the trajectory predictions (the model improves the prediction by
approximately 19% compared to the SF classical model). All the aforementioned
data-based approaches have been used to describe low-density situations using spe-
cific datasets (UCY [22], ETH [18], etc.) where social interactions techniques for
collision avoidance take up to several meters.

Other researchers have focused on developing algorithms based on artificial neu-
ral networks to predict a pedestrian’s speed. For instance, the study proposed by
Tordeux et al. [7] applies feed-forward neural networks (FFNN) to predict the speed
of pedestrians walking on different types of facilities (corridors and bottlenecks).
Several FFNNs are presented to approximate the fitting function with different com-
binations of input features (relative positions, relative velocities, and mean distance
to the nearest ten neighbors in front), hidden layers, and hidden neurons. The results
of FFNN show improvement by 20% compared to the classical approach (Weidmann
fitting model [23]) evaluated with mixed data (corridor and bottleneck). Another
research by Tkachuk et al. [24]. The authors develop a system that simulates pedes-
trians’ behavior during the evacuation process. The proposed system uses FFNN to
predict how people act during evacuations. The acceleration and average velocity
are used to predict each pedestrian’s horizontal and vertical speeds. Another re-
search by Yi Ma et al. [25] proposes an approach based on a multilayer perceptron
artificial neural network for simulating pedestrians’ behavior. The authors train the
artificial neural network using pedestrians’ actual movement data to encapsulate
and predict their future behaviors. To verify the correctness of the proposed simula-
tion system, the authors compared the simulation results of pedestrian counter-flow
in a road-crossing situation and pedestrian collision avoidance with the actual ex-
periments. The simulation results in both studies show that the proposed models
based on artificial neural networks provide greater prediction accuracy by learning
from actual experimental data rather than other models.

For brevity’s sake, our focus in this article is to apply a FFNN to investigate
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and analyze empirically the impact of distance interaction range on dynamics of
pedestrians without modeling bias. Unlike most current research works, we aim
to analyze single-file movement in different homogeneous and heterogeneous gender
flows to predict the pedestrian’s speed.

3 Experimental Data and Measurement Methods

This section presents the empirical data to train and test the artificial neural net-
works. Furthermore, the measurement methods to calculate movement quantities
(headway and speed) are described. To investigate pedestrians’ speed, we used a
dataset from experiments conducted in Palestine [12]. Single-file experiments were
performed at the Arab American university in Palestine with a total of 47 partici-
pants (26 females and 21 males). Several experimental runs were performed focusing
on the influence of gender factor on pedestrians’ movement. Side view videos were
captured using a digital camera for different numbers of pedestrians (densities) and
various gender compositions. The experimental dataset includes the 1D trajecto-
ries recorded in different time frames and the gender information of each pedestrian
(male and female). In the Palestine experiments, the data were obtained after per-
forming several runs for pedestrians walking with the same gender composition (ho-
mogeneous: females alone, and males alone) or mixed (heterogeneous: male-female
walking together)(see Figure 1). Our analysis will utilize the mixed-gender (UX,
N=20, 24, 30), female (UF, N=20), and male (UM, N=20) experiments where N is
the number of pedestrians in each run. In Figure 2 we see the trajectories of pedes-
trians in UX experiments over time. We can notice the emergence of stop-and-go
waves for high densities (N=30) which means that the pedestrianise start to adjust
their position to avoid collision.

Figure 1: Snapshots from Palestine experiments. Left: UM experiment, N = 20. Right:
UX experiment, N = 24.

The same measurement method as [26] is used to calculate the individual speed
and headway for pedestrians walking at each time frame. The speed of the pedestrian
i is calculated at time ¢ as follows:

ozt + At2) — 3t — At/2)
N At ’

vi(t) 4)

where At is a short time constant (10 frames, 0.4 sec.) and z;(t) is the z coordinate
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of pedestrian’s ¢ position at time t. We use the small value of At = 0.4 sec. to
smooth the trajectories in order to avoid fluctuation of the pedestrian’s step [27].

The headway is defined as the distance between a pedestrian i and its predecessor

i+ 1:

ha(t) = Ziga(t) — 2:(2), (5)
where z;,, and z; are the r coordinates of predecessor and subject pedestrian at
time ¢, respectively.

These calculated movement quantities and associated pedestrian information are
utilized as inputs to the FFNN. Table 1 demonstrate the descriptive statistics of
the input and the output data we feed into the FFNNs. The first column of these
tables presents the inputs (subject, predecessor, and follower pedestrian’s headway
distances) and the output (subject pedestrian speed).

Table 1: This table shows the descriptive statistics (number of pedestrians (N), mean,
and standard deviation) for the Palestine dataset [26]. The second column contains the
inputs and output that are used for the proposed FFNNs.

Experiment Factor No. of samples Mean SD N
Subject PD * speed (m/s) 0.219 0.111
Subject PD headway (m) 0.595 0.11
X Predecessor PD headway (m) 15,893 0.608 0.124 15, 20, 24, 30
Follower PD headway (m) 0.588 0.109
Subject PD speed (m/s) 0.615 0.102
Subject PD headway (m) 0.711 0.104
UF Predecessor PD headway (m) 422 0.731 0.111 20
Follower PD headway (m) 0.712 0.120
Subject PD speed (m/s) 0.660 0.095
Subject PD headway (m) 0.694 0.136
UM Predecessor PD headway (m) 443 0.689 0.121 20
Follower PD headway (m) 0.706 0.143
Subject PD speed (m/s) 0.500 0.104
Subject PD headway (m) 0.717 0.119
Ux Predecessor PD headway (m) 435 0.693 0.128 20
Follower PD headway (m) 0.704 0.126

* PD is abbreviation for ”pedestrian”.

UX, N=30 UX, N=24 UX, N=20
100 100 100
a0 a0 80
= 60 = 60 = 60
‘z ‘© ‘z
a0 a0 a0
20 20 : 20

8.0 0.5 1.0 1.5 20 25 30 8.0 0.5 1.0 1.5 20 25 30 8.0 0.5 1.0 1.5 20 25 30
Space [m] Space [m] Space [m]

Figure 2: The trajectories over time for a sample data of UX experiments .
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4 Structure of the Networks and Input Features

We apply several FFNNs to investigate the influence of interaction range (the dis-
tances with the neighbors) on pedestrian’s speed. These networks are fed with
various input features for training. We analyze the results using cross-validation
to control eventual prediction overfitting and to determine the optimal complexity
of the networks in terms of layer and neuron numbers [28]. In this technique, we
resample the dataset by dividing the total dataset to 80% for training (i.e. UX
experiments: 12,715 observations) and 20% for testing (i.e. UX experiments: 3178
observations) randomly. Furthermore, multiple iterations are applied following the
bootstrap resampling technique to evaluate the error estimate precision and, by way,
be able to determine whether an error difference is statistically significant or not [29,
30] (see Figure 3). Randomly subsampling the training and testing datasets allows
us to obtain a distribution of the errors instead of a punctual estimate. The esti-
mation is finally performed using the average of bootstrap subsamples error while
the precision of estimation is evaluated using the bootstrap confidence interval rep-
resented as a boxplot. To quantify the error between the predicted and real values
of the speed, we use the mean squared error (MSE) loss function:

1 < .2
MSE = — Y,-Y), 6
IaRY (©)

where n is the number of observations, Y is the vector of real speed values, and Y
is the vector of predicted values.

Bootstrapping
(1000 iterations)

a

(training, testing)

Pre-process data
Raw data [ (normalization, change —
categorical data to numerical)

Figure 3: The methodology followed in developing the algorithms for speed prediction.
In the pre-processing step, we change the categorical to numerical values and normalize
the data between [0, 1] to have the same scale of values (an important step before training
for artificial neural networks).

The developed networks are trained using Adam optimizer [31] with a learning
rate of Ir = 0.003. During the training phase, the hyperparameters, namely the
number of hidden layers and the number of hidden neurons, are tuned to reach a
robust model. Also, the back-propagation algorithm [32] is used for training FFNNs
by updating the weights’ values. We fit the model using different epoch sizes and a
batch size of 10, which in most cases is sufficient to verify the progress of learning.
Moreover, the Sigmoid activation function is applied for all layers in the different
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versions of the developed algorithm. Finally, to build a prototype for the proposed
prediction model, Keras framework [33] is utilized.

Different versions of the proposed FFNN are employed, varying in the number
of input features fed into the input layer. These inputs indicate the movement
characteristics of pedestrians walking in a single-file experimental setup. In the
analysis, we focus on different combinations of the following headway distances as
inputs:

1. Subject pedestrian headway (D).
2. Predecessor pedestrian headway (DP).
3. Follower pedestrian headway (DF).

Figure 4 illustrates the 1D path of single-file movement experiments, considering four
pedestrians in the video frame. In the UX experiments, the people are distributed
in an ordered manner (pedestrian ¢ gender is male, female, male, etc.).

Figure 4: Tllustration of pedestrians’ positions in 1D scenario, indicating the investigated
headway distances.

There is no standard approach for determining how many hidden layers and neu-
rons should be used when building a prediction algorithm. Therefore, we follow
Heaton’s [34] approach, where it is recommended to set the number of the hidden
layers to be between the number of input features and the number of outputs. We
test several combinations of hidden layers and neurons ranged from neural networks
with one hidden layer and one hidden neuron (i.e. shallow neural networks or lo-
gistics approach) to more complex networks with multiple layers and neurons (deep
neural network). This makes the analysis global, starting from a basic statistical
approach (a logistic regression) to complex networks, and allows the comparison of
different modeling approaches. We tried several combinations of hidden layers and
neurons (1), (2), (3), (3,2), (2,2), (32, 32), and (64) where (x) represents one hidden
layer with x number of hidden neurons. Where (x,y) represents two hidden layers
with a number x of hidden neurons in the first layer and number y of neurons in
the second hidden layer. The prediction results show that the FFNN structure with
two hidden layers (3, 2) (the first and second layers with three and two perceptrons,
respectively)(see Fig. 5) is enough for speed prediction with our dataset.
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Hidden

Input

Figure 5: The structure of the feed forward neural network with two hidden layers (3,
2).

5 Results and Analysis

Our research aims to investigate the influence of the follower, predecessor, and second
predecessor pedestrians’ headway distances on the speed behavior of a pedestrian.
The investigation examines the isotropic nature of the interaction behavior, con-
sidering that a pedestrian interact not only with pedestrians in their field of vision
to regulate the speed but also with the pedestrians behind. We start training and
testing several FFNNs with the Palestine dataset. To estimate the importance of
different input features (DF, D, DP) on predicting the speed of pedestrians, we first
feed each distance alone to the FFNN and then a combination of features. Seven
networks with different input features are developed and validated:

1. In the networks DF, D, DP we have one input feature for each network:
the headway distance of the follower pedestrian, subject pedestrian, and the
predecessor pedestrian, respectively.

2. In networks (DF + D), (DF + DP), and (D + DP) we predict the speed as
a function of combinations of distances in front and behind to investigate the
anisotropy of the pedestrians’ interaction behavior.

3. The (all) network fed with the headway distances of the subject pedestrian
and neighbors altogether (DF + D + DP).

In Figure 6 the MSE values of the algorithms are visualized for training and test-
ing phases using UX experiments, N=20, 24, 30 samples. As we can see, the gap
between the training and testing MSE results is not wide. That means the algo-
rithms are reliable, and there are no overfitting problems. It is also observed that
the speed prediction is enhanced with increasing input features. Figure 7 shows
the relative MSEs of the algorithms taking D-input network for comparison. We
predict the individual speed by training the networks for several iterations follow-
ing the bootstrap approach. Considering the impact of the influential factors, we
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compare the networks with the same number of inputs together. In networks with
one input feature, the D improves the estimation of speed by 1.5% compared to DF
algorithm. That means the distance with pedestrian in front has a higher impact
on the speed prediction than the distance with the follower pedestrian. This result
was confirmed previously as the headway distance is the main dependency in many
models [35]. Moreover, the algorithm with DP increased the MSE by 13% compared
to D algorithm. This result indicates that the headway distance of the second pre-
decessor has no significant influence on the subject pedestrian’s speed. In the case
of two input factors, the algorithm (DF + D) improves the performance of speed
prediction by 16% and 11% in comparison with (DF + DP) and (D4 DP) networks,
respectively. Interestingly, the combination of distance with the pedestrian in front
and right behind improves the speed prediction compared to the combination of
headway distances in front. From observing experiments’ videos, we notice that
the pedestrians in relatively high densities start to adjust their speed when they
approach the nearest neighbors to avoid colliding. This result demonstrates that
the interaction behavior is not strictly anisotropic in single-file movement, contrary
to classical modeling approaches assuming that the front distances only influence
the speed. Therefore, it is suggested that a dynamical model that considers both
distances D and DF is likely to describe more aspects of the single-file dynamics.
Finally, the (all) algorithm which was fed with all headway distances as inputs im-
proves the results by 21% compared to D algorithm (3% compared to the (DF + D)
algorithm). This result indicates that with many input features, we can improve the
speed estimation with percent corresponding to the impact of the inputs.

DF D DP  (DF+D) (DF+DP) (D+DP) all
Networks

Figure 6: Visualization of the training and testing MSE values (using UX, N=20, 24,
30 samples) according to different input variables for networks with two hidden layers,
including three and two hidden perceptrons, respectively. The red dashed line corresponds
to the networks with the lowest values of MSEs.
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Figure 7: Boxplots represent the training MSE results of the algorithms using UX,
N=20, 24, 30 samples with complexity (3,2). The X-axis represents the algorithm inputs
we applied, and the y-axis denotes the relative MSE calculated with D-input algorithms
as a reference case.
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Figure 8: Examples of speed predictions from testing the neural networks (D, DF,
(DF+D), (DF+DP), (DP+D), all) using UX, N=20, 24, 30 samples. As observed in the
actual data (in blue), the speed values for given headway distances tend to be close to the
observed values when we combine DF and D as inputs to the FFNN algorithm or when
we have more input features (all). R? values on the top-right of the figure are calculated
to compare the variability of the estimated speed.
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Figure 9: Boxplots represent the training MSE results of the algorithms with complexity
(3,2) using UF, UM, UX, and N=20 samples. The X-axis represents the algorithm inputs
we applied, and the y-axis denotes the relative MSE calculated with D-input algorithms
as a reference case.

Figure 8 visualizes the relationship between the subject pedestrian headway dis-
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tances and the speed values (actual and predicted) for different networks fed with
UX, N=20, 24, 30 data samples. The networks with the higher number of inputs
can recapture the variability of the data points. As shown in the sub-figures, the
algorithms with the optimal speed prediction results (best input combinations) have
the highest R? values ((DF + D) and (all)). In other words, the optimal algorithms
capture the data points’ variability better than algorithms with inputs of low impact
on the speed.

To investigate the influence of the different distances in front and behind in hetero-
geneous and homogenous gender groups, we trained the same FFNN structure with
data for experiments UF, UM, and UX with N=20 pedestrians. As shown in Figure
9 the distance to the pedestrian behind significantly improves the speed prediction
compared to the distance in front for experiments UF, UM, and UX as well. For the
UX experiments (N=20), the improvement provided by the distance behind is signif-
icant 36% compared to D algorithm (see Figure 9, UX). It is less for the experiment
UF and UM composed of solely female (14%) and males (7%). Furthermore, the
small sizes of the samples do to not allow to systematically demonstrate statistically
that the differences are significant since the boxplots partly overlap. Nevertheless,
the influence of the distance behind is observed for flow solely composed of males
and females, especially for the females. It is, however, clearly more pronounced for
the mixed gender flow. Therefore, it is not to exclude that gender effects in the
mixed flow alternating male and female reinforce the influence of the pedestrian
behind. Further empirical analysis with more data samples should emphasize the
influence of distance behind on the pedestrian’s speed for homogeneous or random
mixed gender groups.

6 Conclusion

This article investigates the impact of headway distances and the interaction range
on pedestrian’s movement by the mean of FFNN. Previous research generally as-
sumes that the pedestrians’ movement is mostly influenced by people in their field of
vision, i.e., in the direction of motion. Such question rely on the anisotropic nature
of the pedestrian interaction behavior. In our research, we analyze the influence
of the range of interaction with the distances behind and in front on pedestrian’s
speed in single-file movement experiments. We predict the speed of pedestrians
using a single-file experimental dataset performed in Palestine including uniformly
mixed and homogeneous gender flow. Because relatively simple mechanisms primar-
ily govern single-file movement, our investigation reveals that a shallow feedforward
neural network structure (3, 2) is sufficient to fit the data optimally.

We explore several algorithms by changing the number and type of input distance
features. The findings show that a prediction algorithm including the distance to
the follower pedestrian as the input feature improves the MSE results by a factor
up to 18% compared to an algorithm solely based on the distance in front. Such
improved may reach up to 36% for certain experiments. Whereas, taking into ac-
count the headway distance of the second predecessor has no strong influence on
subject pedestrian’s speed. Even if they are still significantly observed for gender
homogeneous flow, such features are especially pronouced for uniform mixed gender
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experiments. Therefore, it is not to exclude that the influence on the motion of the
pedestrian behind is reinforced by gender effects.

Many previous research assumes that the pedestrian motion is strongly anisotropic,
i.e., mostly influenced by the environment in the motion direction. However, we ob-
serve that the distance behind in single-file motion plays a role in the dynamic. These
results suggest that the follower headway (DF') is a potential influential factor that
significantly improves the prediction of pedestrian speed. It might be considered
a modeling input. Yet the correlation we observe may be the consequence of an
anisotropic mechanism. Such an assumption should be tested using isotropic and
anisotropic models.

For homogeneous gender groups (UF, and UM), we can notice that the distance
behind the pedestrian influence the prediction of the speed. This is especially the
case for the experiments with female. However, further empirical analysis with
more data samples is needed to highlight this conclusion. For future work, we aim
to experimentand generalise the anisotropy of pedestrian behavior for more complex
and geometries and dynamics, and to take into account further factors beside gender,
e.g., cultural and age effects.

Author Contributions: Conceptualization, M.M.; Formal analysis, R.S. and
A.T.; Methodology, M.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported by the German Federal Ministry of Education
and Research (BMBF: funding number 01DH16027) and the French National Re-
search Agency (ANR) as well as the German Research Foundation (DFG), funding
number 446168800.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects
involved in the study.

Data Awvailability Statement: The datasets analyzed during the current study
are available from the corresponding author on reasonable request.

Acknowledgments: This work was supported by the German Federal Ministry of
Education and Research (BMBF: funding number 01DH16027) within the frame-
work of the Palestinian—German Science Bridge project. MC and AT acknowledge
the Franco-German research project MADRAS funded in France by the Agence
Nationale de la Recherche (ANR, French National Research Agency), grant num-
ber ANR-20-CE92-0033, and in Germany by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation), grant number 446168800.

Conflicts of Interest: The authors declare that there is no conflict of interest
regarding the publication of this paper.

83



Publication II — Questioning the Anisotropy of Pedestrian Dynamics

References

1]

[7]

[8]

(9]

[10]

[11]

[12]

84

Andreas Schadschneider. “Cellular automaton approach to pedestrian dynamics-
theory”. In: In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation
dynamics. Springer, Berlin/Heidelberg (2001), pp. 75-86.

Mohcine Chraibi, Armin Seyfried, and Andreas Schadschneider. “Generalized
centrifugal-force model for pedestrian dynamics”. In: Physical Review E 82.4
(2010), p. 046111.

Dirk Helbing and Peter Molnar. “Social force model for pedestrian dynamics”.
In: Physical review E 51.5 (1995), p. 4282.

Toannis Karamouzas, Brian Skinner, and Stephen J Guy. “Universal power law
governing pedestrian interactions”. In: Physical review letters 113.23 (2014),
p. 238701.

Dirk Helbing, Lubos Buzna, Anders Johansson, and Torsten Werner. “Self-
organized pedestrian crowd dynamics: Experiments, simulations, and design
solutions”. In: Transportation science 39.1 (2005), pp. 1-24.

WJ Yu, R Chen, Li-Yu Dong, and SQ Dai. “Centrifugal force model for pedes-
trian dynamics”. In: Physical Review E 72.2 (2005), p. 026112.

Antoine Tordeux, Mohcine Chraibi, Armin Seyfried, and Andreas Schadschnei-
der. “Prediction of pedestrian dynamics in complex architectures with artificial
neural networks”. In: Journal of Intelligent Transportation Systems (2019),
pp- 1-13.

Isabelle Maroger, Noelie Ramuzat, Olivier Stasse, and Bruno Watier. “Human
Trajectory Prediction Model and its Coupling with a Walking Pattern Gen-
erator of a Humanoid Robot”. In: IEEE Robotics and Automation Letters 6.4
(2021), pp. 6361-6369.

Deepak Sharma, Amol P Bhondekar, AK Shukla, and C Ghanshyam. “A re-
view on technological advancements in crowd management”. In: Journal of
Ambient Intelligence and Humanized Computing 9.3 (2018), pp. 485-495.

Yingying Ma, Siyuan Lu, and Yuanyuan Zhang. “Analysis on Illegal Crossing
Behavior of Pedestrians at Signalized Intersections Based on Bayesian Net-
work”. In: Journal of Advanced Transportation 2020 (2020).

Flurin S Hanseler, Jeroen PA van den Heuvel, Oded Cats, Winnie Daamen,
and Serge P Hoogendoorn. “A passenger-pedestrian model to assess platform
and train usage from automated data”. In: Transportation Research Part A:
Policy and Practice 132 (2020), pp. 948-968.

Rudina Subaih, Mohammed Maree, Mohcine Chraibi, Sami Awad, and Tareq
Zanoon. “Gender-based Insights into the Fundamental Diagram of Pedestrian
Dynamics”. In: International Conference on Computational Collective Intelli-
gence. Springer. 2019, pp. 613-624.



6 Conclusion

[13] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet,
Li Fei-Fei, and Silvio Savarese. “Social lstm: Human trajectory prediction in
crowded spaces”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 961-971.

[14] Hairong Dong, Min Zhou, Qianling Wang, Xiaoxia Yang, and Fei-Yue Wang.
“State-of-the-art pedestrian and evacuation dynamics”. In: IFEFE transactions
on intelligent transportation systems 21.5 (2019), pp. 1849-1866.

[15] Mohcine Chraibi, Antoine Tordeux, Andreas Schadschneider, and Armin Seyfried.
“Modelling of pedestrian and evacuation dynamics”. In: Encyclopedia of com-
plezity and systems science (2018), pp. 1-22.

[16] Antoine Tordeux, Mohcine Chraibi, and Armin Seyfried. “Collision-free speed
model for pedestrian dynamics”. In: Traffic and Granular Flow’15 (2016),
pp. 225-232.

[17] Jur Van Den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. “Recip-
rocal n-body collision avoidance”. In: Robotics research (2011), pp. 3-19.

[18] Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. “You’ll
never walk alone: Modeling social behavior for multi-target tracking”. In:
2009 IEEE 12th International Conference on Computer Vision. IEEE. 2009,
pp. 261-268.

[19] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M
Gavrila, and Kai O Arras. “Human motion trajectory prediction: A survey”.
In: The International Journal of Robotics Research 39.8 (2020), pp. 895-935.
[20] Hao Xue, Du Q Huynh, and Mark Reynolds. “Bi-prediction: pedestrian trajec-
tory prediction based on bidirectional LSTM classification”. In: 2017 Interna-

tional Conference on Digital Image Computing: Techniques and Applications
(DICTA). IEEE. 2017, pp. 1-8.

[21] Irtiza Hasan, Francesco Setti, Theodore Tsesmelis, Alessio Del Bue, Fabio
Galasso, and Marco Cristani. “MX-LSTM: mixing tracklets and vislets to
jointly forecast trajectories and head poses”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2018, pp. 6067-6076.

[22] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. “Crowds by exam-
ple”. In: Computer graphics forum. Vol. 26. Wiley Online Library. 2007, pp. 655
664.

[23] Ulrich Weidmann. “Transporttechnik der fugénger: transporttechnische eigen-
schaften des fuljgangerverkehrs, literaturauswertung”. In: IVT Schriftenreihe
90 (1993).

[24] Konstantin Tkachuk, Xiao Song, and Irina Maltseva. “Application of artifi-
cial neural networks for agent-based simulation of emergency evacuation from

buildings for various purpose”. In: JOP Conference Series: Materials Science
and Engineering. Vol. 365. IOP Publishing. 2018, p. 042064.

[25] YiMa, Eric Wai Ming Lee, and Richard Kwok Kit Yuen. “An artificial intelligence-
based approach for simulating pedestrian movement”. In: IEEE Transactions
on Intelligent Transportation Systems 17.11 (2016), pp. 3159-3170.

85



Publication II — Questioning the Anisotropy of Pedestrian Dynamics

[26] Rudina Subaih, Mohammed Maree, Mohcine Chraibi, Sami Awad, and Tareq
Zanoon. “Experimental Investigation on the Alleged Gender-differences in
Pedestrian Dynamics: A Study Reveals No Gender Differences in Pedestrian
Movement Behavior”. In: JEEE Access 8 (2020), pp. 33748-33757. poI: 10.
1109/ACCESS.2020.2973917.

[27] Jiayue Wang, Wenguo Weng, Maik Boltes, Jun Zhang, Antoine Tordeux, and
Verena Ziemer. “Step styles of pedestrians at different densities”. In: Journal
of statistical mechanics: theory and experiment 2018.2 (2018), p. 023406.

[28] Tom Dietterich. “Overfitting and undercomputing in machine learning”. In:
ACM computing surveys (CSUR) 27.3 (1995), pp. 326-327.

[29] Ron Kohavi et al. “A study of cross-validation and bootstrap for accuracy
estimation and model selection”. In: [jeai. Vol. 14. Montreal, Canada. 1995,
pp. 1137-1145.

[30] Thomas J DiCiccio and Bradley Efron. “Bootstrap confidence intervals”. In:
Statistical science 11.3 (1996), pp. 189-228.

[31] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: International Conference on Learning Representations (ICLR)
(2014).

[32] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learn-

ing representations by back-propagating errors”. In: nature 323.6088 (1986),
pp- 533-536.

[33] Francois Chollet et al. “Keras: The python deep learning library”. In: Astro-
physics Source Code Library (2018), ascl-1806.

[34] Jeff Heaton. Introduction to neural networks with Java. Heaton Research, Inc.,
2008.

[35] Antoine Tordeux, Mohcine Chraibi, Andreas Schadschneider, and Armin Seyfried.
“Influence of the number of predecessors in interaction within acceleration-
based flow models”. In: Journal of Physics A: Mathematical and Theoretical
50.34 (2017), p. 345102.

86


https://doi.org/10.1109/ACCESS.2020.2973917
https://doi.org/10.1109/ACCESS.2020.2973917

PUBLICATION 111

Modeling pedestrian single-file movement:
Extending the interaction to the follower

This article has been published by Subaih, R., and Tordeux, A. (2024). Modeling
pedestrian single-file movement: Extending the interaction to the follower. Physica
A: Statistical Mechanics and its Applications, 633, 129394. DOI: https://doi.
org/10.1016/j.physa.2023.129394.

Author’s Contributions

Conceptualization: Rudina Subaih, and Antoine Tordeux
Methodology: Rudina Subaih, and Antoine Tordeux

Software: Rudina Subaih, and Antoine Tordeux

Validation: Rudina Subaih, and Antoine Tordeux

Formal analysis: Rudina Subaih, and Antoine Tordeux
Visualization: Rudina Subaih

Data curation: Rudina Subaih

Writing — Original draft preparation: Rudina Subaih

Writing — Review and editing: Rudina Subaih, and Antoine Tordeux

87


https://doi.org/10.1016/j.physa.2023.129394
https://doi.org/10.1016/j.physa.2023.129394

Modeling pedestrian single-file
movement: extending the interaction to
the follower

Rudina Subaih!2* Antoine Tordeux?

! Institute for Advanced Simulation, Forschungszentrum, Jiilich, 52425, Germany
2 School for Mechanical Engineering and Safety Engineering, University of Wuppertal,
‘Wuppertal, 42119, Germany

Abstract

This article proposes a new microscopic speed model for one-dimensional pedes-
trian movement. Most existing modeling approaches consider only the distance and
relative speed between a pedestrian and the person in front resulting in totally asym-
metric interaction models. However, the distance with the pedestrian behind may
also influence the behavior of a pedestrian. Based on this assumption, we elaborate
a new asymmetric microscopic model considering the relative distances with the
nearest neighbors behind and ahead using a fine-tuning asymmetry parameter. We
analyze the stability of the new model and calibrate the parameters using two differ-
ent single-file movement datasets. The numerical simulation results show that the
new model has fewer backward movements and pedestrian overlaps than the totally
asymmetric model making the stop-and-go waves in crowded situations more realis-
tic. Furthermore, the proposed fine-tuned model better describes the fundamental
diagram and its scattering.

Keywords: Pedestrian dynamics, Single-file movement, Microscopic model, Least
squares parameter estimate, Fundamental diagram, Stop-and-go waves

1 Introduction

Modeling pedestrian dynamics is essential to organizing safe and efficient crowded
events. For instance, the models can be used to develop simulation software and
assist in decision-making, risk management, and policy development for large pedes-
trian events. Various models have been developed to describe single-file pedestrian
movements [1-7]. Generally speaking, pedestrian models are mainly categorized
as microscopic [7-14] and macroscopic [15-20] based on the motion characteristics
investigated (see [21] for review). Macroscopic models describe the aggregate char-
acteristics of crowds, while microscopic models focus on the movement of individual
pedestrians. Furthermore, the models can be discrete, such as microscopic cellular
automata and macroscopic lattice models, or continuous, using systems of differ-
ential equations. The cellular automata models are random by nature, whereas
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in continuous approaches stochasticity can be introduced through adding noise to
the dynamics. All these models are subject to many modeling assumptions that
describe the way people move and interact with their environment. Several parame-
ters and variables have been introduced in microscopic models to describe pedestrian
interaction behaviors in single-file motions. In most cases, the models are totally
asymmetric, i.e., the interaction model is only based on the distance to the nearest
pedestrian in front and the speed of that pedestrian.

In this paper, we propose a new microscopic stochastic model to describe pedes-
trians’ single-file movement. The originality of the approach lies in the interaction
model, which also depends on the distance to the pedestrian behind. The model
is inspired by previous statistical investigations [22] and empirical observations of
coordination phenomena in single-file motion [23]. A parameter fine-tuning the rel-
ative distance to the neighbors in front and behind is applied. To study the model’s
behavior, we analyze the linear stability focusing on the role of the weight of the
relative distances. We then calibrate the parameters of the deterministic speed
model using two single-file movement datasets and different methods: statistically
by least squares and empirically by simulation. Finally, we numerically investigate
the movement of pedestrians in one-dimensional space and compare the simulation
results with the totally asymmetric model and the real data. The simulation anal-
ysis focuses on space-time trajectories and fundamental diagrams (headway-speed
relation). A summary of our methodology is presented in Figure 1. The results show
that the new model improves the description of the fundamental diagram scattering
and stop-and-go waves, making the simulation results more realistic.

The rest of the paper is structured as follows: we review and discuss the liter-
ature on pedestrian single-file movement models in Section 2. In Section 3, the
microscopic speed model considering the symmetric interaction is defined. Then, in
Section 4, we analyze the linear stability of the deterministic model to investigate
theoretically the behavior of the proposed first-order speed model. The calibration
of the model’s parameters is presented in Section 5. In Section 6, the simulation
results are presented and discussed. Finally, in Section 7, we summarize the content
of the paper.
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Single-file movement experiments

Observations/
assumptions

Y
Define the mathematical model

[dz,(t)=F(Az,(thaldz,(t)- Az, () de+ £, (t)de,|
|@&alt)==yL(t)dt+odW.(t)

Calibration of the models’
parameters
p=(v,, T 1, a)

3

Linear stability analysis }—-

v, T, 1 @

Statistically lly
(LS method) (Tuning)

Simulation

Figure 1: Key methodological milestones in the process of defining and evaluating the
proposed pedestrian speed model.

2 Related Work

To better understand pedestrian dynamics in complex movement systems, many re-
searchers investigate and model pedestrian behavior in one-dimensional space. Many
single-file movement experiments (pedestrians walking in a single line or queue) have
been performed to observe and analyze the factors that influence pedestrians’ speeds,
e.g., recent experiments performed in Germany, Palestine, and Japan [24-26]. Fur-
ther pedestrian trajectories from single-file experiments are available online !. The
single-file experiments provide a basic analysis of pedestrian dynamics, focusing on
the fundamental relationship between speed and distance from neighbors. Various
models based on the experiments have been developed in the literature to reproduce
the observed trajectories as closely as possible. The observation of the experiments
inspired, for instance, Chraibi et al. [7] to introduce the velocity-dependent volume

! Pedestrian dynamics data archive: https://ped.fz-juelich.de/da/doku.php
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2 Related Work

exclusion of pedestrians into the force-based model. The authors observed from the
experiments that pedestrians’ speed is influenced by their shoulder rotation while
avoiding others, leading them to conclude that using a dynamic agent shape would
be more effective than a static one. This results in the improvement of the simula-
tion of pedestrians in crowds. Another study by Cordes et al. [1] applies the concept
of time-to-collision (TTC) to model single-file pedestrian movement. The authors
assume that the TTC quantifies the distance to a collision (between pedestrians) by
combining spatial distances and velocities. That aims to give rise to a new class of
models that represent the interactions among pedestrians by evolving TTC.

Several pedestrian models were proposed, drawing inspiration from other mod-
els. For instance, using car-following models to describe the single-file movement,
Lemercier et al. [4] elaborated a pedestrian interaction model. The model focuses on
the following behavior of pedestrians walking in corridors or queues. The authors
verified the Aw et al. [27] road traffic model in pedestrian traffic and formulated
a new model of interactions adapted to crowd simulation. Kuang et al. propose
an extended optimal velocity model [5]. This model simulates the single-file move-
ment in high density considering the interaction forces (repulsive and attractive
forces) between pedestrians. Other pedestrian single-file models are derived from
two-dimensional force-based models, such as [3, 6]. The issues of agent overlapping
and oscillation in the social force model (as mentioned in [8, 28-31]) can be linked,
in a one-dimensional case, to the limitations of the optimal velocity car-following
model. To prevent backward movements, oscillations, and collisions, the optimal
velocity (OV) model requires fine-tuning of the parameters [32]. Such unrealistic
simulations’ shortcomings of single-file behavior can be addressed using extended
models.

The distance behind is introduced in considerable traffic system models (vehi-
cle models) [33-38]. For example, Ge et al. [37] propose an extended car-following
model by introducing the backward-looking effect. The model considers several ve-
hicles ahead and one behind in a single lane. The simulation of the space-time
evolution of the car headways shows that the model suppressed the traffic jam. Ad-
ditionally, the findings of the linear stability analysis demonstrate that taking into
account the backward-looking effect leads to the stabilization of the traffic system.
Minghui Ma et al. [33] also propose an improved car-following model (cars driven in
a single-file setup) by considering the backward-looking behavior and motion infor-
mation of multiple vehicles. The drivers usually look behind while driving to avoid
collisions with other vehicles. The simulation results show an efficient improvement
in the avoidance of traffic congestion and enhance the stability of the traffic flow
in comparison to the models that include only the distance in front. In pedestrian
dynamics, Rio et al. [23] investigate the visual control of pedestrians following be-
havior. Using experimental investigations, the authors study how pedestrians adjust
their walking speed when following a leader, based on the visual information pro-
vided by the leader’s movements. The study involved experiments with pairs of
participants walking in a straight line, with one person leading and the other follow-
ing. The results show that the follower’s walking speed is influenced by the leader’s
speed and visual cues, including the leader’s head movements and changes in the
walking direction. Considering the findings of Rio et al., we assume that there is
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coordination between the distances of pedestrians and their neighbors in the crowd,
which influences the individual speeds of pedestrians.

In summary, existing pedestrian single-file movement models are systematically
totally asymmetric and can encounter problems with overlapping and backward mo-
tion. Such difficulties are well-known for car-following models and can be overcome
by extending the interaction to the agent behind [33, 39], leading to stability im-
provement and better collective coordination. Besides, collective coordination is
observed in pedestrian single-file movements [23]. Furthermore, recent statistical
analysis using feed-forward neural networks devoid of modeling bias shows that the
distance behind improves the speed prediction [22]. These statements motivate us
to extend a stochastic pedestrian single-file model by incorporating the distance to
the pedestrian behind. Including the distance behind reduces unrealistic pedestrian
overlaps and backward movements, which are observed in totally asymmetric models
under high-density conditions. The model is a scaled-down version used to demon-
strate specific aspects of the original system with fewer influential factors and in a
simplified way.

3 Proposed Model

We consider a single-file movement of pedestrians in continuous time on a uni-
dimensional space of length L with periodic boundary conditions. The pedestrians
initially ordered by their indexes n = 1,2,..., N and assume that the follower and
predecessor of the n-th pedestrian are the (n — 1)-th and (n + 1)-th pedestrians at
any time, respectively. Due to the periodic boundary conditions, the predecessor of
the last pedestrian is the first agent and the follower of the first pedestrian is the
last one as illustrated in Figure 2. The x-axis position of a pedestrian n at time ¢
is denoted as z,(t). To calculate the distances between the consecutive pedestrians,
we subtract the positions as:

{A;r:n(t) = Tppi(t) —za(t), n=1,... N—1, ®

Azyn(t) = L+ z1(t) — zn(2).
In the proposed pedestrian single-file model, we assume that pedestrians can feel
how close (the distance) the person behind is, which affects how they behave and
extends the interaction. For the n-th pedestrian, the model is given by the following
stochastic differential equation:

dz,(t) = F(Az,(t) + a(Aza(t) — Aza_y(t)))dt + & (t)d,
dén(t) = —&n(t)dt + adW,(t).

2)

Here the speed of a pedestrian is an OV function F' coupled to a stochastic noise
provided by the Ornstein-Uhlenbeck process with rate v > 0 and volatility ¢ € R,
and W,(t) being a Wiener process. The Ornstein-Uhlenbeck process is used to
enhance the smoothness of noise evolution and make the noise more realistic than
white noise in speed-based models (see [2] for a more detailed description). The
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OV function is assumed positive, increasing, and bounded by the maximal desired
speed.

In contrast to the totally asymmetric model [2], the OV function depends on a
weighted average between the distance to the predecessor Az, (t) and the distance
to the follower Az, 4(t), adjusted by a dimensionless, fine-tuning asymmetry pa-
rameter o € R. The totally asymmetric model is restored if a = 0. Conversely, the
speed function only depends on the distance to the follower if @ = —1, whereas it is
symmetric and depends on the arithmetic mean of the distances to the follower and
the predecessor if & = —1/2. Intuitively, the cases a > 0 lead to homogenization
dynamics, as a large distance ahead and a small distance behind results in a higher
speed, while a small distance ahead and a large distance behind results in a lower
speed and inversely.

C -
| ——

Figure 2: Scheme of the system with periodic boundary conditions. Az,(t) is the
distance of the pedestrian n to the predecessor at time ¢, while Az,_1(t) is the distance
to the follower.

The OV function F : R — R* includes classical parameters related to the pedes-
trian characteristics and behaviors, such as the desired speed vy > 0, the desired
time gap T > 0, and the pedestrian size (circle width) ¢ > 0. A typical OV function
is the following bounded linear function:

F(z) = min {vo, W} 3)

that we approximate using the smoothed Log-Sum-Exp function [40] given by:

Fs(m)=—elog(exp(—%)+e@(—¥)), as e—0. (4)

In the following, we set the speed smoothing ¢ to 0.01 m/s.
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4 Linear Stability Analysis

We first examine the linear stability of the deterministic first-order model (Equation
(2)) to determine possible values of parameters. Applying stability analysis allows us
to investigate the behavior of the proposed first-order deterministic model (Equation
(2)). Therefore, we need to determine the behavior of a solution to the differential
equation as follows.

In general, suppose a linear differential equation given by the form:

F(t) =af(t), where ¢t € [0,00) and a € R (5)
The general solution of Equation (5) above is:
£(#) = be*, (6)
with b = f(0). Indeed, we have in this case:
f(t) = abe® = af(t). (7)

So, f'(t) depends on the value of the constant a. It converges if and only if the value
of a is non-positive, i.e.,
a <0, (8)

otherwise the system will collapse.
Focusing on the interactive part of the model, the single-file dynamics for the n-th
pedestrian is given by:

inl) = =(AT(t) + A(ATa(t) = Azp ()
T ©
= ?((1 + a)Az,(t) — aAz,_1(1)).

By substituting Az,(t) = Zp41(t) — za(t) and Az, _1(t) = z,(t) — z,—1(t) into
Equation (9) we obtain:

To(t) = %((1 + a)zpp — (1 4+ 2a)z, + aznq)

= %(1 + @)Tps — %(1 + 2a)z, + %af:cn_l

(10)
= —%(1 + 2a)z, + %((1 + a)Tpp + aTn_)
= ar, + C($n+11 xn—l) dt
with: )
and: .
C(Tpt1,Tn1) = f((l + @)Tpy1 + Ty ). (12)
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Then the system will be stable if the stability condition a < 0 is satisfied (see
condition (8)), which is given by

1
—7(1+20) <0,

which is equivalent to:
a>-—1/2 (13)

as T > 0.
Interestingly, the critical value is:

ac =—1/2 (14)

corresponds to a symmetric case where the distance in the OV function is the arith-
metic mean of the distances to the nearest neighbors in front and behind. Setting
a > —1/2 makes the weight for the distance ahead higher than the weight for the
distance behind. Therefore, the following model is only stable if the interaction
model is asymmetric, giving more importance to the distance to the neighbor in
front.

5 Parameters Calibration

5.1 Single-file Movement Datasets and Data Preparation

Two different experimental datasets are used to statistically estimate the parameters
of the model and for comparison with the simulation results. The first data sample
is the one-dimensional dataset of Paetzke et al. [24]. Several experiments were con-
ducted in Diisseldorf, Germany in 2021 to study the influence of gender on pedestrian
movement. The pedestrians were instructed to move in an oval corridor one after the
other without haste and overtaking (see Figure 3). We select the mixed alternating
experiment for the parameters’ calibration. The data includes different experimental
runs with a pedestrian number varying between N = 8,16, 20,24, 32,36,40. That
ensures obtaining different ranges of variation of distances between pedestrians, and
speeds. The data of each pedestrian in the different experimental runs are collected
and labeled with pedestrian ID (unique number). This data will be used to esti-
mate individually the model’s parameters (see Section 5.2). For more details on the
experiment, refer to the article [24].

The second experiment dataset used for parameter calibration and validation of
the numerical simulation is the single-file movement dataset by Ziemer et al. [41].
The experiment (see Figure 4), conducted in Germany within the project BaSiGo,
focuses on the analysis of pedestrians’ dynamic moving in an oval system with
periodic boundary conditions. We use in the following the data of the experiments
with N = 15,30, 47,52, 55, 59 participants. Evaluating the model with two different
datasets will ensure that the model is reliable and generalizes well to new data.
Table 1 summarizes the main information about the experiments.

The trajectory data from the experiments is used to calculate the pedestrian
positions z,(t), the speed v,(t), and the distance in the front Az, (t) and behind
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Figure 4: Overhead view of the BaSiGo single-file movement experiment run N = 59.

Az,_1(t). Here is the equation of the pedestrian’s speed:

_ zat+ AL/2) — z(t — At/2)

vn () At

where At short time interval around ¢ (10 frames, i.e., 0.4 s).

(15)

5.2 Nonlinear Least Squares Estimates of the Parameters

The calibration of the proposed model (2) is necessary for making quantitative
predictions. To achieve this, we need to adjust the models’ parameters to fit the
different samples of experimental data. We use the nonlinear least squares method
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. . Geometry| Number Frame- . Pedestrian
Experi- | Location, .. Investiga- | . . .
length of partici- | rate . identification
ment date tion
[m] pants [fps] across runs
Diisseldorf, N =38, 16, Gender
CroMa | Germany 14.97 20, 24, 32, | 25 factor v
(2021) 36, 40 (mixed)
Diisseldorf, N = 15, Congested
BaSiGo | Germany 26.84 30, 47, 52, | 16 d nfmic
(2013) 55, 50 ¥

Table 1: Table summarizing CroMa and BaSiGo datasets used for parameter calibration
and model validation.

to estimate the parameters p = (v, T, £, &) related to the deterministic part of the
model (see (2) and (4)). The non-linear speed model reads as follows:

My(Azy, Azryq) = FuD:T,g(A:vn + a(Az, — A:r:ﬂ_l)), (16)

with F' the smoothed optimal velocity function given in (4). The regression is
nonlinear since the OV function is sigmoidal. Then, using an experimental sample of
K observations of individual speed and distances in front and behind (sg, Az, AzY)
where £ = 1,..., K, we estimate the parameters p by minimizing the difference to
the square between the observed speeds and the model predictions:

K
p = arg mjnz (sk — My(Axy, Amg))z. (17)
P k=1

The model residuals are the variables:
Ri(p) = sk — My(Axy, Azy) (18)

The least squares estimates minimize the sum of squared residuals. In the following
sections, we begin by presenting the global parameter estimates over the full data
samples, followed by individual estimates calculated for each pedestrian. Subse-
quently, we delve into a detailed discussion of the estimates for a.

5.2.1 Global Parameter Estimates

Figure 5 illustrates the global parameter estimations over the full samples for the
totally asymmetric model (with initialized & = 0) and the proposed asymmetric
model (with estimated o) without noise (presenting the deterministic part of the
model). Note that for the initial model with @ = 0, the speed solely depends on
the distance in front. The optimal velocity function appears directly (see Eq. (3)
and figure 5, left panel). On the other hand, the extended speed model depends on
the distances in front and behind, allowing to reproduction of a certain variability
even in the deterministic framework (see figure 5, right panel). The results show
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Figure 5: Global estimates of the model’s parameters (without noise) using nonlinear
least squares. The scatter plots of the fundamental diagram for the BaSiGo experimental
dataset and the predictions of the totally asymmetric model (left panel) and the asymmet-
ric model (right panel) are presented. The parameters’ estimates (T, £,vg) of the optimal
velocity are close to each other for both models. The asymmetric model reproduces the
variability of the fundamental diagram and improves the prediction. Note that only 16%
of the data samples are shown in the scatter plots to improve the readability of the figure.

that the estimates of the parameters (7', £, vp) for the optimal velocity function are
equivalent to the totally asymmetric and asymmetric models. The estimates for
T are 1.04 s and 0.98 s, and for £ are 0.32 m and 0.34 m for totally asymmetric
and asymmetric models, respectively. While, the desired velocity, vg, is 1.19 m/s
for both models. Therefore, the model extension with the fine-tuning parameter
o does not affect the shape of the fundamental (distance-speed) relationship. We
note that the estimated value of @ = —0.46 is negative and close to the critical
stability condition (¢ = —1/2). Furthermore, we observe that the asymmetric
model with an estimated a has the highest R? value (R? = 0.93) compared to the
totally asymmetric model (R? = 0.86). Indeed, it also recovers part of the variability
of the distance-speed relationship. The proposed model captures the variability of
the data points better than the totally asymmetric model. However, this is not
surprising as the asymmetric model has one more parameter.

The distributions of the residuals of both models are compact as shown in Figure 6.
This means that the least squares estimates are close to the maximum likelihood
estimates. The distribution for the asymmetric model is slightly more concentrated
with a lower standard deviation. The standard deviation of the residual is approxi-
mately 0.15 m/s for the totally asymmetric model while it is 0.11 m/s for the new
asymmetric model. A Fisher test for equality of the variance allows rejecting the
equality hypothesis without any doubt (p-value smaller than 2.2e—16). Further-
more, assuming that the residuals are normally distributed, the Akaike information
criterion:

AIC = 2k — 2log(L)

with k& the number of parameters (3 and 4 for the totally asymmetric and asym-
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Figure 6: Histograms of the residuals for the totally asymmetric model (left panel) and
the asymmetric model (right panel). The distribution for the asymmetric model is slightly
more concentrated.

metric models, respectively) and L the maximum likelihood, is much smaller for the
asymmetric model (AIC = —9632.5) than for the initial totally asymmetric model
(AIC = —5732). This confirms the enhancements of the new model even by tak-
ing into account that it includes one more parameter. Therefore, the improvements
gained with the new parameter of the asymmetric model are statistically significant.

Finally, note that our observations are extracted from the trajectories and are
time-dependent. The generalized least squares estimates, taking into account the
(linear) time dependence, are close to the ordinary least squares estimates.

5.2.2 Individual Parameter Estimates

The CroMa experimental sample offers the possibility to identify the pedestrians in
each experimental run. This allows the model parameters to be estimated individ-
ually for each pedestrian across all density levels. The estimates for the parame-
ters (T, ¢,vp) of the optimal velocity function are close to those obtained using the
BaSiGo dataset (see Figure 7). The legend in the right panel gives the mean values
over all estimates of pedestrians’ individual parameters.

The histograms of the individual parameter estimates are depicted in Figure 8.
The variation ranges for parameter estimates of the optimal velocity function are
reasonable. For the desired time gap T the values range from 0.6 to 1.6 s. While
for the pedestrian size ¢ the value ranges from 0.2 to 0.5 m, and for the desired
speed ¥ from 0.9 to 1.6 m/s. Drawing attention to intriguing findings, that the
individual estimates for the parameter « are systematically non-positive and may
even be smaller than the critical stability threshold ac = —1/2.

A summary of the different estimates for the parameters of the totally asymmetric
and asymmetric models is given in Table 2. It is noteworthy that the estimates are
very similar for the different datasets (BaSiGo and CroMa) and estimation methods
(global and individual). The parameters’ values of the optimal velocity function
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Figure T: Global (left panel) and individual (right panel) least squares estimates of the
parameters using the CroMa dataset. The values for individual estimates are the averages
for all the pedestrians. The parameter estimates are relatively stable. Note that only 16%
of the observations and predictions are presented to improve the readability.
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Figure 8: Histograms of the parameter estimates by individual nonlinear least squares
using the CroMa dataset.

for both the totally asymmetric and asymmetric models are approximately similar.
These results confirm the accuracy of the estimates obtained and the characteristic

behavior of single-file pedestrian motion.
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5 Parameters Calibration

Global estimates ‘ Individual estimates
BaSiGo dataset CroMa dataset
ic;tigy{aaiyg; Asymmetric model (estimated a)
T [s] 1.04 0.98 1.01 0.97 £0.18
¢ [m] 0.32 0.34 0.33 0.35 £ 0.06
Tp [m/s] | 1.19 1.19 1.14 1.16 £0.13
a - —0.46 —0.44 —039+0.14
R? 0.86 0.93 0.88 0.92
AlIC —5732 —9632.5 | —6123.4 | —8722.7

Table 2: Table summarizing the statistical estimates of the models’ parameters for
global/individual estimates, totally asymmetric, and proposed models. The values for
the individual estimates have the form X £V with X the mean value and Y the empirical
standard deviation over all the individual pedestrian estimates. The parameter estimates
are close to each other whatever the sample and method used. The AIC is calculated over
an identical sample size of 6000 observations.

5.2.3 Remarks on Estimation of o

The estimates for the asymmetry parameter « are systematically negative and close
to the critical stability value ag = —1/2 (see 13). However, simulation results
show that positive values for a, typically @ = 1, provide more realistic dynamics,
especially regarding pedestrian overlap and backward movement when stop-and-go
waves arise.

In fact, the low estimates for  mainly result from simple kinematic effects to single
file motion, regardless of the dynamical model. Assuming that the OV function
F: s+ F(s) = s/T is linear, the cost function in the least squares estimates reads
for the parameter a:

K
fla)= Z (vk — %(Awk + oAz, — A.:r;g)))2 (19)
k=1
and the derivative is given by:
r —2 X 0 1 0
fla) = 7 Z(Amk — A:vk)('uk - %(A:vk + a(Az, — Amk))). (20)

k=1

The function f being convex, it is minimal if:

YK (Azi — Azd) (T — Axy)

F@=0 = &= e — Adly?

(21)
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The probabilistic distribution of the distances ahead and behind can reasonably
be assumed to be identical. Assuming further that these distances and the speed
are statistically independent, i.e., that there is no relationship between speed and
distances, we asymptotically obtain:

a—+—-1/2 as K — oo, (22)
since:
Zle(A:r:k — Azd)u T 0 (23)
Zf:l(Amk - AI‘E)Q '
while:
_Zf:l(Amk - AJ:E)AJ;;, . - Zle A&’,‘% — AJ:;CALI’,‘%

K o2 K 2 0412 0 — _1/21 (24)
Zk:l{Azk - Amk) Zk:l Amk + {Amk) - 2A.’L‘kA.’L‘k

as K — oo. The kinematic relationships of the single-file motion dominate and bring
the statistical estimate for « close to the critical stability condition for which the
model is symmetric. The fine-tuning effects of the asymmetric mechanisms weighted
by a occur at a lower level, through the interdependence between the distances
and the speed. Therefore, the statistical estimate of the asymmetry parameter
a is strongly influenced by the kinematic relationship of the single-file movement.
This can lead to misleading calibration values for this parameter. In the following
simulation analysis, we manually calibrate o and observe that positive values, e.g.,
a = 1, give more realistic dynamics.

6 Simulation Results

6.1 Simulation Setup

We numerically simulate the asymmetric single-file pedestrian model using an Euler-
Maruyama scheme. The numerical solver reads:

To(t + 0t) = 2,(t) + 6tF (Az,(t) + a(Az,(t) — Az,_y(t))) + 5téal(t),

(25)
&t + dt) = £,(t)(1 — 6ty) + VotoZ,(t),

with the time step 0t = 0.01 s and independent normal random variables (Z,(t), t =
mdt, m € {0,1,2,...}),. Here F is the smoothed OV function given in Equation
(4) with vp = 1.19 m/s, T'=0.98 s and ¢ = 0.34 m. The speed smoothing is equal
to € = 0.01 m/s. For the noise parameters, we use the same estimates as [2] in the
simulation, namely ¢ = 0.09 ms—3/2 and v = 0.23 s~!. The values for o will be
set manually, ranging from —0.25 to 2. The size of the geometry and number of

pedestrians are set as in the BaSiGo and CroMa experiences. The initial condition
is uniform with speeds zero.
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6 Simulation Results

6.2 Assessing the Asymmetry Parameter by Simulation

We assess the asymmetry parameter a by estimating the parameters using synthetic
datasets obtained by simulation. The aim is to evaluate how strong the influence
of the kinematic single-file relationships on the least squares estimates for a. The
scatter plots of real and synthetic data with corresponding least squares parameter
estimates are shown in Figure 9 and Table 3.

Synthetic data
BaSiGo |a=—-025 |a=0 |a=025 |a= a=2
T [s] 0.98 1.06 1.06 1.04 1.05 1.04
E[m] 0.34 0.31 0.32 0.32 0.32 0.32
Tp [m/s] | 1.19 1.14 1.13 1.11 1.07 1.08
a —0.46 —0.45 —0.49 | 0.5 —0.5 —0.49
R? 0.92 0.92 0.94 0.95 0.96 0.97

Table 3: Table summarizing the estimates of the model’s parameters by nonlinear least
squares using the BaSiGo data set and synthetic data obtained by simulation with «
ranging between —0.25 and 2. The symbols T, E, 7y, and a are the parameter values
estimated by least squares. Note that although the setting for o ranges from —0.25 to 2
in the simulations, the estimates remain stable around —0.5 due to kinematic single-file
effects.

We can clearly observe in the figure that decreasing « increases the scattering of
the data points. The simulation with & = —0.46 as statistically estimated, shows
an unrealistically larger scatter.

As expected, the least squares estimates for the asymmetry parameter a remain
constant, close to the critical stability condition e = —1/2. This holds even
when a => 0 in the model, confirming the predominance of the kinematic single-file
relationships in the dynamics and the limited significance of the statistical estimates.
The estimates of the parameter (T, £,vy) of the OV function (4) are also stable.
Only the estimates for the desired speed vy slightly decrease as « increases due to
the nonlinear shape of the OV function.

6.3 Main Simulation Results

In this section, we compare the real data of the BaSiGo experiment with the simu-
lation results of the totally asymmetric model and the new asymmetric model. The
parameters of the deterministic speed models are set as follows: the desired speed is
v = 1.19 m/s, the desired time gap is 7' = 0.98 s, the pedestrian size is £ = 0.34 m,
while the noise parameters are equal to o = 0.09 ms=%/?2 and v = 0.23 s~'. The di-
mensionless asymmetry parameter « is set to zero for the totally asymmetric model
whereas it is equal to one for the new asymmetric model. Several simulation runs
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Figure 9: Least squares parameter estimates and pedestrian distance-speed scatter plots
for the BaSiGo experiment (grey dots), the model prediction (upper left plot), and simula-
tion results for & between —0.25 and 2 (remaining plots). The estimates for the asymmetry
parameter a remain constant, close to the critical stability condition ag = —1/2, even for
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the synthetic data when o >> 0. Note that only 16% of data points are presented.

are carried out with different numbers of pedestrians N = 15, 30, 47, 52, 55, and 59

as in the BaSiGo experiment.
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6 Simulation Results

6.3.1 Fundamental Diagram

We compare the fundamental relationship between the distance ahead and the speed,
as well as the distributions of the speed and distance individually (see Figure 10).
It is noteworthy that the asymmetric model better shapes the data point scatter of
the fundamental diagram compared to the totally asymmetric model (see Figure 10,
upper panels). In both real and synthetic data obtained with the asymmetric model,
three main clusters can be observed. These clusters are also present in the totally
asymmetric model, but they are less pronounced.

Experimental data Totally asymmetric model Asymmetric model
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Figure 10: Distance-speed scatterplot (upper panels), speed histogram (middle panels)
and spacing ahead histogram (bottom panels) of BaSiGo experimental data (left panel)
and the simulation results of totally asymmetric (o = 0, central panels) and asymmetric
(ax = 1, right panels) models for runs N = 15,30,47,52,55,59. Note that only 16% of
the data samples were used in the scatter plots. The red dashed line is located on zero to
indicate the negative values of the speed and distance ahead.

The marginal distributions of the speed and distance confirm the improvements
obtained with the asymmetric interaction model. Regarding the speed distribu-
tion, both the real data and simulation results from the new model exhibit close
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similarities, with three modes of identical amplitude. Conversely, the shape of the
three modes is less pronounced in the totally asymmetric model (see Figure 10,
middle panels). As for the distance distributions, they appear relatively compact
and similar for the real data and the asymmetric model, with distances less than
3 and 4 meters, respectively. In contrast, the totally asymmetric model distance
distributions have an unrealistically large tail with distances up to 8 meters (see
Figure 10, bottom panels). Furthermore, both the real data and the simulation
results from the asymmetric model show a minimal occurrence of negative values
for speed and distance compared to the totally asymmetric model (see the left tail
of the distributions in Figure 10, middle and lower panels).

6.3.2 Space-Time Diagram

In this section, we compare the real (BaSiGo experiment) and synthetic single-file
trajectories obtained from the totally asymmetric and asymmetric models with 59
participants (see Figure 11). It is observed that the totally asymmetric model shows

Totally asymmetric Asymmetric
Experimental data model (a=0) model (a=1)
100 //— ———| 100 100
80— a0 ——
= <5 —~
//% ’//{//
40 4 40 40
— % /
5 =
20 //“;’/::f 20 20
e /)/f//’;
=

0 0 0 T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 .0 0.0 0.5 1.0 1.5 2.0

[

Space [m] Space [m] Space [m)]

Figure 11: Trajectories of N = 59 pedestrian walking on a ring of length 27 m observed
over a segment of length 2 m. From left to right: real data (BaSiGo experiment), totally
asymmetric model (a = 0), and asymmetric model (o = 1), respectively.

—

more backward movement with negative speed and overlap compared to the real
data. This aligns with the previously mentioned findings regarding the left tail of the
speed and distance distributions, which spread out in the totally asymmetric model
(refer to Figure 10, middle and bottom panels). The simulations for the asymmetric
model with o = 1 show fewer backward movements, making the stop-and-go waves
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7 Conclusions

qualitatively more realistic. This improvement is obvious in the crowded experiment
with 59 participants.

Another enhancement introduced by our proposed model is to make the noise
parameters constant. In previous work [2], the noise parameters (¢ and ) are
state-dependent, meaning that multiple values for the noise parameters (¢ or y) are
estimated depending on the distance class (refer to Figure 7 in the paper [2]). By
introducing the distance to the follower, we simplify the calibration process for the
noise parameters, making the calculations much easier.

7 Conclusions

We present an original asymmetric stochastic model describing the movement of
pedestrians in one-dimensional space (single-file motion). Taking inspiration from
statistical analysis [22] and observation of coordination in pedestrian single-file mo-
tion [23], we include the distance to the follower in the OV model, resulting in an
asymmetric interaction model including a fine-tuning asymmetry parameter . Sta-
tistical estimates of the model using experimental data enable parameter calibration
and interpretation. They also demonstrate that the enhancement brought by the
new parameter is statistically significant. The comparison of the experimental data
and synthetic data of the improved model under different settings of «, specifically
a =0 and a = 1, shows a strong agreement between the asymmetric model results
and the experimental data. The simulations performed with positive a exhibit re-
duced backward movements, resulting in stop-and-go waves that closely resemble
the experimental data. Additionally, the model describes a realistic fundamental
diagram and, in particular, its scattering. Further evaluation in terms of validation
and verification to assess the model’s overall performance will be undertaken in fu-
ture work. The proposed model should also be benchmarked against various models
found in the literature.
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