001     1046666
005     20251113202119.0
024 7 _ |a 10.1088/1367-2630/ae05be
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03893
|2 datacite_doi
037 _ _ |a FZJ-2025-03893
082 _ _ |a 530
100 1 _ |a Młyńczak, E.
|0 P:(DE-Juel1)161379
|b 0
|e Corresponding author
245 _ _ |a Spin–orbit effects in the surface state of Fe(001) revealed by full surface Brillouin zone mapping
260 _ _ |a [Bad Honnef]
|c 2025
|b Dt. Physikalische Ges.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763022558_30729
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The electronic structure of Fe has been experimentally studied using angle-resolved photoemission spectroscopy (ARPES) since the early days of photoemission. Yet, the existence and nature of the Fe(001) surface state remain a subject of ongoing debate. Fe(001) is considered a prototypical transition metal system and moreover, one of the key players in the spintronics research. Here, we present the electronic structure of Fe(001) epitaxially grown on Au(001), mapped by high-resolution ARPES within the entire surface Brillouin zone, to demonstrate for the first time the exact location and extent of the Fe(001) surface state. The experimental results are supported by the relativistic slab calculations performed using density functional theory (DFT). The surface state observed for the pristine Fe(001) surface vanishes after overnight rest of the sample in ultrahigh vacuum as well as after intentional exposure to 5 Langmuir of oxygen which proves that it is not topologically protected. Furthermore, the dispersion of the surface state is found to depend on the relative orientation of the magnetization, which is explained based on the DFT results as related to the Rashba effect. These new experimental and theoretical results contribute to the existing knowledge on the electronic properties of Fe(001) with relevance for the basic research as well as for spintronic effects, such as tunneling anisotropic magnetoresistance.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Surendran, A.
|0 0009-0008-9920-2847
|b 1
700 1 _ |a Shaju, S.
|0 0009-0003-7291-7651
|b 2
700 1 _ |a Freindl, K.
|0 0000-0002-6099-4700
|b 3
700 1 _ |a Korecki, J.
|0 0000-0003-0964-4155
|b 4
700 1 _ |a Madej, E.
|0 0000-0002-8163-1810
|b 5
700 1 _ |a Wilgocka-Ślęzak, D.
|0 0000-0002-9758-7201
|b 6
700 1 _ |a Szczepanik, M.
|b 7
700 1 _ |a Sobol, T.
|0 0000-0002-9661-0932
|b 8
700 1 _ |a Aguilera, I.
|b 9
700 1 _ |a Bihlmayer, G.
|0 P:(DE-Juel1)130545
|b 10
700 1 _ |a Blügel, S.
|0 P:(DE-Juel1)130548
|b 11
700 1 _ |a Spiridis, N.
|0 0000-0002-5276-0568
|b 12
773 _ _ |a 10.1088/1367-2630/ae05be
|g Vol. 27, no. 9, p. 093506 -
|0 PERI:(DE-600)1464444-7
|n 9
|p 093506
|t New journal of physics
|v 27
|y 2025
|x 1367-2630
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1046666/files/M%C5%82y%C5%84czak_2025_New_J._Phys._27_093506.pdf
856 4 _ |y Restricted
|u https://juser.fz-juelich.de/record/1046666/files/Supplement.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1046666/files/main.pdf
909 C O |o oai:juser.fz-juelich.de:1046666
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW J PHYS : 2022
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:02:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:02:41Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-17
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-17
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-17
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21