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Proteins are ubiquitous in biological membranes and have a significant impact

on their scattering properties. In this contribution, we introduce a general

mathematical construction to add proteins to any pre-existing membrane model

and to calculate the resulting elastic and/or inelastic scattering cross section. The

model is a low-resolution one, which describes the proteins as made up of

regions of homogeneous scattering length density that extend through an

arbitrary fraction of the membrane and possibly protrude out of it. In this

construction, the protein characteristics that are relevant to scattering are their

space and time correlation functions in the two-dimensional plane of the

membrane. The results are particularized to a static bilayer model and to a

Gaussian model of a fluctuating membrane. The models are then applied to the

joint analysis of small-angle neutron and X-ray scattering of red blood cell

membranes, of which transmembrane proteins constitute 25% of the volume,

and to neutron spin–echo data measured on the same systems.

1. Introduction

Membranes are central to biological systems, where they

control interactions and exchanges between cells and their

environment (Watson, 2015). Developing analytical tools to

investigate their nanometre-scale structure and dynamics is

central to understanding their physicochemical properties and

how they fulfil their biological functions. Small-angle scat-

tering of either X-rays or neutrons has a central role to play in

that context, because it is one of the few experimental

methods that can be used to investigate membranes on the

nanometre scale under conditions close to those of their

natural environment (Büldt et al., 1978; Pusterla et al., 2017;

Pusterla et al., 2020; Gommes et al., 2021a). Scattering

methods, however, are often challenging because data analysis

is required to convert reciprocal-space data into real-space

structural or dynamic insights (Sivia, 2011; Squires, 2012). This

step generally requires mathematical modelling (Pedersen,

1997; Gommes, 2018).

Many models are available for analysing the scattering from

bilayer membranes, with different levels of structural sophis-

tication (Kučerka et al., 2004). In particular, models have been

developed to capture the scattering resulting from uneven

water distribution in various sections of the membrane

(Kiselev et al., 2008), from the lateral organization of the

membrane and from bilayer asymmetry (Nickels et al., 2015),

from the curvature of the membrane (Chappa et al., 2021), and
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from the random deformation of the membrane under the

effect of thermal fluctuations (Gommes et al., 2024).

An additional characteristic of biological membranes that

contributes to making their scattering analysis challenging is

the presence of membrane proteins. Such proteins are

ubiquitous because they play central biological roles as

chemical receptors, as controllers of molecular exchanges

across the membrane, as enzymes and in many functions

related to cellular adhesion (Mohandas & Gallagher, 2008;

Himbert & Rheinstädter, 2022; Von Heijne, 2006; Kinnun et

al., 2023; Levental & Lyman, 2023; Krugmann et al., 2020;

Krugmann et al., 2021). Red blood cells (RBCs) are excellent

model systems for in cellulo studies using scattering techni-

ques. In previous work, the properties of cytoplasmic water

(Stadler et al., 2008b), haemoglobin diffusion and dynamics

(Stadler et al., 2008a; Stadler et al., 2011; Stadler et al., 2012;

Stadler et al., 2014; Doster & Longeville, 2007; Longeville &

Stingaciu, 2017), and haemoglobin–haemoglobin interactions

in RBCs (Krueger & Nossal, 1988; Krueger et al., 1990; Shou et

al., 2020) have been studied using neutron scattering methods.

In the present work, we consider the scattering from vesicles

consisting of RBC membranes. These membranes are complex

systems consisting of asymmetric membranes with a hetero-

geneous lipid composition, including a large amount of

cholesterol, and more than 50 types of transmembrane

proteins (Mohandas & Gallagher, 2008; Himbert & Rhein-

städter, 2022).

The presence of proteins has several different impacts on

the scattering of membranes. The sheer presence of proteins

reduces the contribution of the membrane to the scattering

pattern and replaces it with a protein contribution. However,

the relevant contrast is between the protein and the local

scattering length density (SLD) of the membrane. A thorough

analysis of the scattering therefore requires one to consider all

the cross-correlations between the constituents of the

membrane and of the protein. Recent modelling work testifies

to this complexity (Anghel et al., 2018; Spinozzi et al., 2022;

Spinozzi et al., 2023).

In the present contribution, we introduce a general math-

ematical construction to add proteins to any pre-existing

membrane model and to calculate the resulting elastic and/or

inelastic scattering pattern. Because small-angle scattering is a

low-resolution experimental method, the proteins are

described here as regions with homogeneous SLD that cross

the membrane and possibly protrude out of it. In addition to

greatly simplifying the mathematics, this description is versa-

tile enough to apply to a large variety of proteins and

membranes. In this construction, the protein characteristics

that are relevant to scattering are their external dimensions

and their space and time correlation functions in the two-

dimensional plane of the membrane.

The first section of the paper is experimental, focusing on

the scattering data used to illustrate the models. They consist

of small-angle neutron scattering (SANS) and small-angle

X-ray scattering (SAXS) data measured on RBC membranes

and of neutron spin–echo (NSE) data measured on the same

systems. The general model is presented afterwards, and it is

particularized to a static bilayer model and to a Gaussian

model of a fluctuating membrane. These models are then used

in the Discussion section to analyse the elastic and inelastic

scattering data measured on the RBC membranes.

2. Experimental

RBC liposomes were obtained from the blood of healthy

anonymous volunteers, provided by the French Blood Bank

(Établissement Français du Sang, Grenoble), for neutron

scattering experiments at the Institut Laue–Langevin (ILL) in

Grenoble, France. Fresh blood was taken from healthy human

volunteers by venipuncture to produce RBC liposomes for

SAXS experiments at the Heinz Maier-Leibnitz Zentrum

(MLZ) in Garching, Germany. Blood was stored at 4�C prior

to sample preparation.

The preparation of RBC liposomes followed a slightly

modified protocol as initially described by Himbert et al.

(2017, 2022). All used chemicals were obtained from Sigma–

Aldrich (Massachusetts, USA). The RBC samples were

centrifuged at 2000 relative centrifugal force (rcf) for 5 min at

4�C to spin down the RBC pellet. The supernatant consisting

of blood plasma including the ‘buffy coat’ was removed, and

the RBC pellet was washed with 300 mOsm phosphate-

buffered saline (PBS) buffer (containing 137 mM NaCl,

2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4 and 10 mM

glucose). The washing procedure was performed three times in

total. The RBC pellet was subsequently suspended in pre-

chilled lysis buffer (3% PBS buffer pH 8.0) to final RBC

volume fractions of around 20% for the SANS and NSE

experiments and 7% for the SAXS measurement. The

suspension was vortexed for 10 s, incubated on ice for 30 min,

and centrifuged at 15600 rcf (SANS), 30000 rcf (SAXS) or

60000 rcf (NSE) for 30 min at 5�C to spin down the RBC

membrane fraction. Finally, the RBC membranes were washed

four times with 300 mOsm PBS buffer by centrifuging them

for 30 min at 5�C. The last three washing steps in preparation

for the neutron scattering experiments were done with D2O-

based PBS buffer (99.9% atom D). The RBC membranes were

then diluted to nominal lipid concentrations of 6 mg ml� 1 for

the SAXS measurement and 30 mg ml� 1 for the SANS and

NSE experiments.

To obtain RBC liposomes, these RBC membrane solutions

were sonicated on ice using a tip sonicator. To this end, 20

repetitions of 5 s pulses at a power of 75 W (SANS and NSE)

or 100 W (SAXS) were performed, followed by a cooling

phase of 25 s. The RBC liposome solutions were then finally

centrifuged at 20000 rcf for 30 min, which allows separation of

the unilamellar RBC liposomes from larger aggregated

particles and larger multilamellar vesicles (Himbert et al.,

2017). A fraction of the 30 mg ml� 1 RBC liposome solution

was diluted to 3 mg ml� 1. This procedure allowed us to obtain

RBC liposome solutions at nominal concentrations of

6 mg ml� 1 for SAXS, 3 and 30 mg ml� 1 for SANS, and

30 mg ml� 1 for NSE experiments.

SAXS measurements were performed on the laboratory

instrument KWS-X (Xeuss 3.0, Xenocs, Grenoble, France) at



the MLZ. The samples were filled into glass capillaries with a

diameter of 2 mm. Measurements were performed at sample-

to-detector distances of 0.5 and 1.7 m using an X-ray wave-

length of 1.34 Å, corresponding to a q range of 0.0044–

1.177 Å� 1. The KWS-X instrument uses a MetalJet D2+ as

X-ray source (Excillum, Kista, Sweden). Two-dimensional

scattering data were recorded on a moveable Eiger2 R 4M

detector at ambient temperature and reduced to 1D patterns

using the XSACT software (as provided by Xenocs). Scat-

tering intensities were corrected for transmission and for

solvent scattering. The modulus of the scattering vector q is

defined in this work as q ¼ jqj ¼ ð4�=�Þ sinð�=2Þ, with the

incident X-ray or neutron wavelength � and the scattering

angle �.

SANS measurements were performed on D22 at the ILL

(Matsarskaia et al., 2023). Samples were measured in rectan-

gular quartz cells (Aireka Scientific, Hong Kong, China) with

1 mm thickness. All measurements were performed at 21�C. A

q range of 0.005–0.642 Å� 1 was covered using a wavelength of

6 Å and a collimation and sample-to-detector distance of

17.6 m. Raw data were corrected using the scattering of the

empty sample cell and the electronic noise (via measuring

B4C). Normalization to absolute scattering intensity was done

using an attenuated empty beam measurement. Reduction of

the 2D detector images to 1D spectra was performed using the

software Grasp (Dewhurst, 2023). Prior to further data

analysis, the PBS D2O buffer signal was subtracted from the

RBC liposome sample signal. RBC liposomes were measured

at nominal concentrations of 3 and 30 mg ml� 1 with SANS.

After division by the nominal RBC liposome concentration,

the SANS data of the 3 and 30 mg ml� 1 solutions overlapped

within the statistical uncertainty, and no structure factor

effects were observed in the SANS data of the 30 mg ml� 1

RBC liposome solution. Hence, the experimental SANS data

of the 30 mg ml� 1 liposome solutions were used for further

data analysis as described below.

The SANS and SAXS patterns of the 30 and 6 mg ml� 1

RBC liposome solutions, respectively, are shown in Fig. 1(a).

They are typical of membrane scattering patterns, with an

overall q� 2 scattering at low q pointing to the overall 2D

structure of the membrane. The deviations from this trend at

higher q characterize the inner structure of the membrane.

To capture the dynamic properties of the RBC membranes,

NSE measurements were performed on the IN15 instrument

at the ILL (Matsarskaia et al., 2023). Samples were filled into

2 mm quartz cells (Hellma, Müllheim, Germany). Three inci-

dent neutron wavelengths of 8, 10 and 12 Å were used during

the experiment. The instrumental resolution was measured for

each setup using the elastic scattering of graphite. The NSE

data are expressed in terms of the intermediate scattering

function I(q, �) as a function of both the modulus of the

scattering vector q and the correlation time � (Squires, 2012).

Elastic scattering (e.g. SAXS or SANS) is a particular case of

I(q, �) for � = 0. The obtained I(q, �)/I(q, 0) were corrected for

transmission and buffer scattering. The normalized data

I(q, �)/I(q, 0) are shown in Fig. 1(b) for three representative

values of q.

3. Modelling

3.1. General formalism

We consider here a general formalism which encompasses

both elastic and inelastic scattering. Consequently, the system

is described through its space- and time-dependent SLD

�(x, t) at a point x and time t. The intermediate scattering

function is then expressed as the following Fourier transform

(Van Hove, 1954; Squires, 2012; Gommes et al., 2021b):

Iðq; �Þ ¼

ZZ

dV1 dV2 exp � iq � ðx1 � x2Þ
� �

h�ðx1; tÞ �ðx2; t þ �Þi;

ð1Þ

where each integral is over the entire space. Here and

throughout the paper, angle brackets h i stand for a time

average or an ensemble average. In the case of deterministic

and time-independent models, the brackets can simply be

ignored. The classical expression for the scattering cross

section for elastic scattering (SAXS or SANS) is obtained as a

particular case of equation (1) by setting � = 0. Finite values of

� are notably relevant to the NSE signal, which is generally

reported as I(q, �)/I(q, 0).

In the specific case of a membrane, it is convenient to

express the intermediate scattering function I(q, �) per unit

area A of the projected membrane. The thus-defined inter-

mediate scattering function is then the classical Fourier

transform over a variable r of the following correlation func-

tion:

C�ðr; �Þ ¼
1

A

Z

dV1 h�ðx1; tÞ �ðx1 þ r; t þ �Þi: ð2Þ

If the membrane model is statistically stationary in its plane,

all statistical properties are translation invariant in the plane.

In other words, the x1 dependence of the integrand is only

through its component orthogonal to the membrane, say along

z. We can therefore write

Figure 1
(a) SANS and SAXS scattering by RBC membranes and (b) NSE data on
the same systems at (b1) q = 0.036 Å� 1, (b2) q = 0.071 Å� 1 and (b3) q =
0.109 Å� 1.



C�ðr; �Þ ¼

Z1

� 1

dz h�ðzez; tÞ �ðzez þ r; t þ �Þi; ð3Þ

where ez is a unit vector along z.

For further purposes, it is convenient to consider explicitly

the case of a membrane made up of several layers, each with a

distinct SLD �ðnÞ� . In that case the overall SLD can be written

as

�ðx; tÞ ¼
XN

n¼1

�ðnÞ� Inðx; tÞ; ð4Þ

where Inðx; tÞ is the indicator function of the nth layer, equal

to 1 if point x is in layer n at time t and to 0 otherwise. In the

context of scattering by a randomly fluctuating membrane

under the effect of thermal fluctuations, it is convenient to use

a probabilistic interpretation of the angle brackets h i in

equation (1) and to define the following two-point probability

function:

Sm;nðx1; x2; �Þ ¼ hI nðx1; tÞ Imðx2; t þ �Þi; ð5Þ

corresponding to the probability of points x1 and x2 belonging

to the nth and mth layers at different times separated by an

interval �. With that notation, the correlation function of a

membrane with various sublayers, as defined in equation (3),

takes the form

C�ðr; �Þ ¼
XN

n¼1

XN

m¼1

�ðnÞ� �
ðmÞ
� Cm;nðr; �Þ ð6Þ

with

Cm;nðr; �Þ ¼

Z1

� 1

dz Sm;nðzez; zez þ r; �Þ; ð7Þ

where the integral with respect to z is over the entire thickness

of the membrane. The elastic or inelastic scattering cross

section of the membrane is then obtained as the Fourier

transform of equation (6) on variable r.

The general approach that we propose to model fluctuating

membranes with included proteins is based on the construc-

tion sketched in Fig. 2. In that construction, the membrane

model [Fig. 2(a)] is complemented by an independent 2D

model in the xy plane to describe the position and extent of

proteins in the membrane plane [Fig. 2(b)]. The latter 2D

structure is extended in the z direction as infinite cylinders,

which are then intersected with the membrane model. In the

sketch of Fig. 2 the cylinders are shown with circular cross

sections, but there is no restriction on the possible shape of the

cross sections.

From a mathematical perspective, the construction in Fig. 2

boils down to modelling the SLD as

�ðx; tÞ ¼
XN

n¼1

�ðnÞ� Inðx; tÞ

" #

1 � Ipðx; tÞ
� �

þ
XN

n¼1

�ðnÞp Inðx; tÞ

" #

I pðx; tÞ; ð8Þ

where Ipðx; tÞ is the indicator function of the cylinder asso-

ciated with the proteins and �ðnÞp is the local SLD of the protein

within the nth layer of the membrane. Because indicator

functions can only take the value 0 or 1, the first term in

equation (8) assigns the SLD of the membrane �ðnÞ� to the

points in space outside the cylinders and the second term

assigns the SLD of the protein �ðnÞp to the points inside the

cylinders.

Note that the general expression in equation (8) also allows

us to address the case of proteins protruding from the

membrane, possibly in an asymmetric way (see Fig. 3). This

situation is modelled by adding bogus layers on both sides of

the true membrane with the same SLD as the solvent, e.g.

�ð1Þ� = �ðNÞ� = 0. Letting the protein SLD be n dependent

enables one to assign a lower scattering contrast to any

protruding part, as would be expected if these parts were

swollen with solvent. Similarly, the approach also enables one

to model a protein that extends through an arbitrary fraction

of the membrane, by equating the SLDs �ðnÞp ¼ �
ðnÞ
� for suitable

values of n.

Starting from equation (1), and without any assumption

besides the statistical independence of the protein and

Figure 2
General modelling construction with independent (a) membrane and (b)
protein models, which are intersected to create (c) the membrane with
included proteins.

Figure 3
Examples of configurations captured by equation (8), whereby the
protein (a) crosses through the membrane, (b) extends through a fraction
of the membrane or (c) protrudes out of the membrane. In the last case, a
bogus layer is added to the membrane with the same SLD as the solvent.
The different colours in the figure denote different SLDs.



membrane structures, i.e. of Ipðx; tÞ and Inðx; tÞ, one finds that

the correlation function that replaces equation (6) in the case

of membranes with included proteins is

C�ðr; �Þ ¼ CðaÞ� ðr; �Þ þ CðcÞ� ðr; �ÞCpðr; �Þ; ð9Þ

with

CðaÞ� ðr; �Þ ¼
XN

n¼1

XN

m¼1

ð1 � �pÞ �
ðnÞ
� þ �p�

ðnÞ
p

� �

� ð1 � �pÞ �
ðmÞ
� þ �p�

ðmÞ
p

� �
Cm;nðr; �Þ ð10Þ

and

CðcÞ� ðr; �Þ ¼
XN

n¼1

XN

m¼1

�ðnÞ� � �
ðnÞ
p

� �
�ðmÞ� � �

ðmÞ
p

� �
Cm;nðr; �Þ: ð11Þ

Here, �p is the volume fraction of the protein cylinder phase,

which is equal to the volume fraction of proteins within the

membrane in the case of Fig. 3(a). Comparison with equation

(6) shows that CðaÞ� ðr; �Þ is the correlation function of the

original membrane with the SLD of each layer �ðnÞ� replaced by

an average value that accounts for the presence of proteins

ð1 � �pÞ �
ðnÞ
� þ �p�

ðnÞ
p . The correlation function CðcÞ� ðr; �Þ has a

similar interpretation, with the SLD of each layer �ðnÞ� replaced

by its contrast with the protein �ðnÞ� � �
ðnÞ
p . The last factor in

equation (9) is the correlation function of the protein cylinder

phase, defined as

Cpðrxy; �Þ ¼ hI pðx1; tÞ Ipðx1 þ r; t þ �Þi � �2
p; ð12Þ

where the angle brackets are ensemble averages or averages

over x1. Note that, by construction of the cylinders, the

dependence of Cp(r, �) on r is only through its component in

the plane rxy. The last term in equation (12) ensures that the

correlation function Cp(r, �) converges to 0 for large values

of rxy.

3.2. Specific models

3.2.1. Protein model

We are concerned here with the modelling of the cylinder

phase in Fig. 2(b), which aims to capture the spatial distribu-

tion of proteins within the membrane plane. Mathematically,

this boils down to proposing an analytical expression for

Cp(r, �) in equation (9), which is independent of the

membrane model itself.

In the specific case of elastic scattering, the relevant

correlation function is Cp(r, 0), i.e. for � = 0. In that case, a

possible approach consists of assuming a (2D) monodispersed

hard-disc model with radius Rp. This is equivalent to writing

the 2D Fourier transform of Cp(r, 0),

Ipðqxy; 0Þ ¼ �pA2
pPpðqxyÞ SHDðqxyÞ; ð13Þ

where �p is the number of proteins per unit area of the xy

plane, Ap ¼ �R2
p is their projected area and Pp(qxy) is their

form factor.

PpðqxyÞ ¼
2J1ðqxyRpÞ

qxyRp

" #2

; ð14Þ

where J1( ) is the Bessel function of the first kind of order 1.

SHD(qxy) is the hard-disc structure factor. There exists no

exact analytical form for SHD(qxy), but the following is a good

approximation for low densities (Baus & Colot, 1986; Studart

et al., 1996):

SHDðqxyÞ ’ 1þ 4
J1ðqxyRpÞ

qxyRp

1

ð1 � �pÞ
2
� 1

" #( )� 1

; ð15Þ

where �p = �pAp is the volume fraction of protein cylinders.

Although this approach based on a structure factor can in

principle be generalized to inelastic scattering by time-

dependent systems (Zhang et al., 2014), this can be done more

easily with Boolean models (Sonntag et al., 1981; Jeulin, 2000;

Gommes, 2022). In that spirit, the interactions of the proteins

are ignored altogether and the discs are allowed to overlap.

Due to this overlap, the volume fraction of the protein does

not depend linearly on their surface concentration �p and the

relationship is

�p ¼ 1 � exp � �p�R2
p

� �
: ð16Þ

For �p’ 0.25 the overlapping of discs amounts to less than 4%

of the space. Although letting the discs (and proteins) overlap

is physically unrealistic, from a scattering perspective this

assumption is relatively inconsequential. The corresponding

in-plane correlation function is

Cpðrxy; 0Þ ¼ ð1 � �pÞ
2

exp �pKðrxy; 0Þ
� �

� 1
� �

; ð17Þ

where K(rxy, 0) is the intersection area of two discs with their

centres at a distance rxy from each other, namely

Kðrxy; 0Þ ¼ 2R2 cos� 1
rxy

2R

� �
�

rxy

2R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
rxy

2R

� �2
r" #

ð18Þ

for rxy � 2R and K = 0 otherwise. In the limit of �p � 1, the

correlation function converges to Cp ’ �pK. In that limit, the

scattering coincides with equation (13) with SHD = 1. The

approach based on Boolean models is easily generalized to

inelastic scattering from time-dependent structures by letting

the proteins move in the xy plane. Equation (17) remains valid

in that general case, only with K(rxy, �) obtained from K(rxy, 0)

in equation (18) via convolution with the protein displacement

law (Gommes, 2022).

3.2.2. Slab membrane model

The simplest membrane model we consider is a static and

deterministic scattering density profile �(z), independent of

both x and y (Kiselev et al., 2002; Kučerka et al., 2004). In this

case, the Fourier transform of C�(r) from equation (3) is

IðqÞ ¼ �ðqzÞ
�
�

�
�2ð2�Þ

2
�ðqxÞ �ðqyÞ; ð19Þ

where �(qz) is the 1D Fourier transform of �(z) and the

two delta functions arise from C�(r) being independent of the



in-plane components of r. The rotational average of I(q)

uniformly over all directions of space is

IðqÞ ¼
2�

q2
j�ðqÞj2: ð20Þ

This results from integrating equation (19) over a sphere of

radius q and dividing by its area 4�q2.

When proteins are present in the membrane, the corre-

sponding scattering is obtained as the Fourier transform of

equation (9). After averaging over all directions of space, the

result is

Iðq; �Þ ¼
2�

q2
j�ðaÞðqÞj2 þ

Z1

0

d� j�ðcÞðq�Þj2Ipðq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �2

p
; �Þ;

ð21Þ

where �(a)(qz) and �(c)(qz) are the Fourier transforms of the

modified SLD profiles with �(z)! (1 � �p)�(z) + �p�p and

�(z)! �(z) � �p, respectively. In the second term of equation

(21) the integration results from rotational averaging. � is the

cosine of the azimuthal angle and Ip(q, �) is the 2D Fourier

transform of Cp(rxy, �) within the membrane plane, namely

Ipðqxy; �Þ ¼ 2�

Z1

0

rxy drxy J0ðqxyrxyÞCpðrxy; �Þ; ð22Þ

where J0( ) is the Bessel function of the first kind of order zero.

Note that, in the particular case of elastic scattering by a static

structure, Ip(qxy, 0) can be modelled as in equation (13).

We now consider the particular case of membranes made up

of amphiphilic molecules with a hydrophobic chain of length

lC and a hydrophilic head of thickness lH. To keep the

discussion general, we also allow the presence of solvated

parts of proteins that protrude from the membrane over a

distance lS on both sides. The Fourier transform of the

corresponding SLD is

�ðqÞ ¼ 2�S

sin½qðlS þ lH þ lCÞ�

q
þ 2ð�H � �SÞ

sin½qðlH þ lCÞ�

q

þ 2ð�C � �HÞ
sinðqlCÞ

q
; ð23Þ

where �S, �H and �C are the SLDs in each region. This

expression corresponds to the scattering density contrasted

with the void. When contrasted with the solvent and in the

presence of membrane proteins, �S, �H and �C must first be

formally replaced by the protein-corrected average and

contrasted values, from which �S is afterwards subtracted. In

other words, �(a)(q) and �(c)(q) are obtained by replacing the

SLDs in equation (23) by

�
ðaÞ
S=H=C ¼ �S=H=Cð1 � �pÞ þ �p�p � �S ð24Þ

and

�
ðcÞ
S=H=C ¼ �S=H=C � �p; ð25Þ

respectively.

3.2.3. Gaussian membrane model

The general procedure in Fig. 2 and equation (9) for adding

proteins to an existing membrane model is not restricted to

slabs. We discuss here the case of a Gaussian membrane

model, which was developed for the joint analysis of both

elastic and inelastic scattering data (Gommes et al., 2024). The

model is illustrated in Fig. 4. In addition to the same para-

meters as in the slab models, capturing the thicknesses of the

various sublayers, the Gaussian model has other parameters

characterizing the random fluctuations.

In the general model, both compression and bending fluc-

tuations are accounted for. In the simpler version that we

consider here, only bending fluctuations are included. These

are captured by two parameters: a characteristic length l�
controlling the amplitude of the fluctuations, and a char-

acteristic length lxy controlling the size of the deformations in

the direction parallel to the membrane. The different effects of

these two parameters are illustrated in Figs. 4(a) to 4(d). In the

case of inelastic scattering, additional parameters are needed

to characterize the dynamics of the fluctuations, as we will

discuss later.

In the context of the Gaussian model, the correlation

function C�(r, �) comprises two contributions,

C�ðr; �Þ ¼ C�ðrzÞ þ ~C�ðr; �Þ: ð26Þ

The first term accounts for the average structure, averaged

either over time or over the entire xy plane. The second term

accounts for the deviations from the average, i.e. for the

Figure 4
Realizations of the Gaussian membrane model with thickness 40 Å and
(a) l� = 0, identical to a slab model, (b) l� = 15 Å and lxy = 100 Å, (c) l� =
30 Å and lxy = 100 Å, and (d) l� = 15 Å and lxy = 50 Å. The corresponding
scattering patterns for a homogeneous SLD are shown underneath.



statistical fluctuations, which are generally time dependent.

Mathematically, the first term in equation (26) is the self-

convolution of the average SLD profile, namely

C�ðrzÞ ¼

Z1

� 1

dz h�iðzÞ h�iðzþ rzÞ; ð27Þ

where h�i(z) is given in equation (22) of Gommes et al. (2024).

Because this function depends only on the coordinate rz,

it leads to a contribution identical to the slab model in

equation (21).

The second term in equation (26) characterizes the devia-

tions from the average structure. The latter fluctuations are

captured in the model by a Gaussian random field, which is

comprehensively described by its space and time correlation

function. The specific analytical form that we assume here is

gWðrxy; �Þ ¼ 1þ 4D�=l2
xy

� �� 1
exp �

ðrxy=lxyÞ
2

1þ 4D�=l2
xy

" #

; ð28Þ

which is a particular case of equation (45) of Gommes et al.

(2024) in the limit lz!1. This limit is structurally equivalent

to suppressing compression fluctuations of the membrane.

Equation (28) describes the membrane bending in terms of

Gaussian wave packets of size lxy that randomly move in the xy

plane with diffusion coefficient D and randomly overlap

positively or negatively. Based on gW(rxy, �), the scattering

length correlation function ~C�ðr; �Þ is calculated using equa-

tion (26) of Gommes et al. (2024). The latter equation still

holds when proteins are present in the membrane, but two

versions are calculated for the protein-corrected SLDs
~C
ðaÞ

� ðr; �Þ and ~C
ðcÞ

� ðr; �Þ in line with equations (10) and (11).

Note that the correlation function of the fluctuations
~C�ðr; �Þ depends on both the out-of-plane rz and in-plane rxy

components of r. In that case, unlike the slab model, the

evaluation of the second term in equation (9) cannot be done

directly in reciprocal space. Therefore, calculating the protein

scattering with the Gaussian membrane model requires an

analytical expression for the protein correlation function

Cp(rxy, �) in real space. In that respect, the Boolean model is

more convenient than the hard-disc model [see equation (17)].

4. Discussion

The chemical composition of RBC membranes is notoriously

complex, with a variety of lipid molecules forming a hetero-

geneous bilayer structure containing both ordered and disor-

dered phases, in which up to 50 different types of proteins are

embedded (Mohandas & Gallagher, 2008; Himbert &

Rheinstädter, 2022). In order to analyse the scattering data in

Fig. 1 with as simple a model as possible, we assume a unique

average lipid comprising a hydrophilic head and hydrophobic

chain with thicknesses lH and lC, respectively. Biological RBCs

also have a spectrin-based cytoskeleton, which is anchored to

the RBC membrane via the junctional and ankyrin protein

complexes (Bennett & Baines, 2001). As a consequence of the

specific RBC liposome preparation used in this work, the

cytoskeleton is absent from the samples, but the membrane

proteins are largely preserved.

Dupuy & Engelman (2008) provide an estimate of 23% for

the overall transmembrane fraction of RBC. Himbert et al.

(2017) report that these proteins can effectively be repre-

sented as domains having a characteristic size of 28 Å in the

membrane plane and a transmembrane thickness of 40.6 Å.

More detailed analysis is obtained by separating the proteins

using gel electrophoresis; the prevailing proteins are visible as

a third band on such gels. The biological function of these

‘band 3’ proteins is to transport anions across the membrane

(Aoki, 2017; Poole, 2000). Because of their prevalence, we

hereafter consider that the band 3 protein is representative of

all other RBC membrane proteins.

The approximate structure and size of the band 3 protein

have been determined using AlphaFold (Abramson et al.,

2024). The AlphaFold protein model has a thickness of around

40 Å, close to the thickness of the RBC membrane, and a

comparable size in the orthogonal direction. Independent

cryo-electron microscopy (cryo-EM) shows that the shape of

this band 3 protein as a monomer is that of an ellipse with

major/minor axes of 59/31 Å and a transmembrane length of

47 Å (PDB ID 7tw2; Xia et al., 2022). These dimensions are

similar to those reported by Himbert et al. (2017), which

reassures us in our assumption that the band 3 protein is

representative of all transmembrane domains in RBCs. The

cryo-EM structure (Xia et al., 2022) is shown in Fig. 5. The

structural models shown in the figure were generated using

PyMOL (Schrödinger LLC, 2015). In the range of q relevant

to the data of Fig. 1, the inner structure of the band 3 protein

cannot be resolved by small-angle scattering. In order to

calculate the scattered intensities, the band 3 protein is

therefore assumed to have a homogeneous SLD. The

following values are calculated from the protein composition:

�p’ 12.062� 10� 6 Å� 2 for X-rays and �p’ 1.685� 10� 6 Å� 2

for neutrons (Kienzle, 2025).

The fitting of the membrane scattering data by the slab

model with included proteins is shown in Fig. 6. The band 3

protein is modelled as an equivalent cylinder with radius Rp =

21.4 Å, corresponding to an area �R2
p identical to that of the

actual elliptical section. The protein is assumed not to extend

Figure 5
Structure and size of the membrane component of the band 3 protein in
the monomeric state as found in RBC membranes, as determined by cryo-
electron microscopy. (a) Side view and (b) top view.



beyond the limits of the membrane, corresponding to setting

lS = 0 in equation (23). The following SLDs are used for the

lipid heads and chains: �H ’ 14.2 � 10� 6 Å� 2 and �C ’ 8.1 �

10� 6 Å� 2 for X-rays, and �H ’ 1.87 � 10� 6 Å� 2 and �C ’

� 0.07 � 10� 6 Å� 2 for neutrons, which are borrowed from

earlier work (Gommes et al., 2024). These values are

comparable (though not identical) to the values calculated for

complex RBC membranes according to the composition

reported by Himbert et al. (2021). In all cases, the solvent is

heavy water, with �W ’ 9.37 � 10� 6 Å� 2 for X-rays and �W ’

6.37 � 10� 6 Å� 2 for neutrons.

Because the radius of the protein/cylinder is imposed, the

only fitting parameters for the fit are lH and lC. Both the hard-

disc and Boolean models were tested, and the fitted para-

meters are very similar in the two cases: lC ’ 16.3 Å and lH ’

5.0 Å for the Boolean model (total membrane thickness

42.6 Å), and lC ’ 16.6 Å and lH ’ 4.5 Å for the hard-disc

model (total membrane thickness 42.2 Å). In the case of the

SANS data, the two models are indistinguishable on the scale

of Fig. 6. Note that the total thickness of the membrane is close

to the size of the band 3 protein in that direction [Fig. 5(a)],

which retrospectively justifies our assumption that the protein

does not protrude from the membrane.

In the case of neutron SLDs, the protein contribution to the

scattering is found to be two orders of magnitude smaller than

the membrane contribution [Fig. 6(a)]. This means that the

contribution of band 3 to the SANS is comprehensively

captured by its effect on the average SLD, i.e. by the first term

in equation (9). Interestingly, this is not the case for the SAXS,

for which the protein itself is the the largest contributer to the

scattering at intermediate q. In particular, the second term in

equation (9) is responsible for the shoulder in the scattering

pattern around q ’ 0.1 Å� 1 [Fig. 6(b)].

Under biological conditions, the band 3 protein is generally

present in RBC membranes in the form of a dimer, corre-

sponding to an elongated elliptical section with major/minor

axes 105/31 Å (Xia et al., 2022). The scattering from this type

of structure can be calculated from the general construction in

Fig. 2 by using cylinders with elliptical cross sections instead of

circular. For the hard-disc model, this is done by replacing

equation (14) by the form factor for ellipses, and by identifying

the hard-disc radius in the structure factor in equation (15)

with the ellipse’s major axis. For the Boolean model, this is

done by replacing equation (18) by the geometric covariogram

of randomly oriented ellipses. The results of the fits are

reported in Fig. S1 and Table S1 in the supporting information.

Globally, the quality of the fits is slightly degraded when

dimers are assumed instead of monomers. However, the effect

is very limited. This results from the convolution in the second

term of equation (21), by which subtle features in protein

scattering Ip(qxy) are smeared in the total scattering pattern of

the membrane. In the following, we assume band 3 monomers,

modelled as cylinders with a simple circular section.

As an alternative to the slab model, the same SAXS and

SANS data sets were also jointly analysed with the Gaussian

membrane model. The result of the fit is shown in Fig. 7,

together with a realization of the model. The fitted parameters

show that the membrane is subject to significant fluctuation. In

particular, the standard deviation of the membrane displace-

ment in direction z is l�’ 23 Å and the lateral extension of the

deformations in the membrane plane is lxy ’ 63 Å. These

values are of the same order of magnitude as those reported in

earlier work for different types of membranes (Monzel &

Sengupta, 2016; Gommes et al., 2024). Because of these fluc-

tuations, the actual area of the membrane is slightly larger

than its projected area in the xy plane. The roughness factor,

calculated using equation (S10) of Gommes et al. (2024), is

about 1.2. Using this value, the equivalent thicknesses of the

Figure 6
Fitting of the membrane (a) SANS and (b) SAXS data with the slab
model with included proteins. The blue and green lines are the membrane
and protein contributions, respectively, corresponding to the first and
second terms in equation (21), and the red curve is their sum. The solid
and dashed lines are the Boolean and hard-disc protein models, respec-
tively. The fitting range extends from q = 8 � 10� 3 Å� 1 to q = 0.5 Å� 1.

Figure 7
(a) Fitting of the membrane SANS and SAXS data with the Gaussian
random membrane model with included band 3 protein. The circles are
the data [same as in Fig. 1(a)] and the solid lines are the fits. (b) Particular
realization of the model with the protein-defining cylinders shown in red,
and with the two shades of grey highlighting the chain and head parts. The
fitting range extends from q = 8 � 10� 3 Å� 1 to q = 0.5 Å� 1.

http://doi.org/10.1107/S1600576725007277


chain and head parts of the membrane can be obtained from

the fitted parameters of the Gaussian membrane model as the

volume-to-area ratios. The values are lC ’ 16.1 Å and lH ’

5 Å, corresponding to a total membrane thickness of 42.2 Å,

very similar to the slab model.

These results agree with previous work on oriented multi-

lamellar stacks of RBC membranes (Himbert et al., 2017;

Himbert & Rheinstädter, 2022). In that work liquid-ordered

(lo) and -disordered (ld) lipid phases in RBC membranes, with

thicknesses of 48 Å lo and 41 Å ld, and a membrane protein

fraction with a thickness of 40.6 Å were reported. Reported

ratios of the components are 30.2% lo, 45.0% ld and 24.8%

membrane protein (Himbert et al., 2017; Himbert & Rhein-

städter, 2022). Taking into account the weighted fractions of

the lipid ordered and disordered phases, an average thickness

of the RBC membrane of 43.8 Å is obtained.

Elastic scattering data, such as SAXS or SANS, capture

only the instantaneous structure of the membrane and are

blind to its dynamics. The realizations in Figs. 4(b)–4(d) and

Fig. 7(b) are therefore to be understood as instantaneous

snapshots of a dynamic structure. Insights into the dynamics of

the fluctuations can be experimentally obtained from NSE

experiments: the thus-obtained intermediate scattering func-

tion I(q, �) is plotted in Fig. 8. Because the SLDs relevant to

these experiments are the same as for SANS, one can safely

assume that the band 3 protein does not contribute signifi-

cantly to the NSE data [Fig. 6(a)]. In other words, the NSE

data can be modelled on the basis of the first term in equation

(9), namely CðaÞ� ðr; �Þ, where the proteins only contribute

through the modification of the membrane’s average SLD.

The fitting of the Gaussian membrane model to the NSE

data is illustrated in Fig. 8. All structural parameters of the

model were fixed to their values obtained from the fitting of

the SANS and SAXS data. The dynamics of the membrane are

then described by the function gW(rxy, �) from equation (28),

which has the diffusion coefficient D as the only additional

parameter. The value obtained from the least-squares fitting of

the entire NSE data set is D ’ 1.85 Å2 ns� 1. This value can be

converted to a typical correlation time by noting that any

memory of the earlier structure is lost when the wave packets

responsible for the membrane deformation have diffused over

a distance larger than their size lxy. The correlation time is

therefore �c = l2
xy=ð4DÞ ’ 960 ns, where the factor 4 is typical

of 2D random walks. Time-dependent realizations of the

model over a time span of 3�c are shown in Fig. 9.

5. Conclusions

We have developed a general mathematical construction for

adding protein-like inclusions to any pre-existing membrane

model and for calculating the resulting scattering cross section.

The general construction is that of Fig. 2, where the inclusions

are defined as cylinders that intersect with the membrane. The

shape and size of the inclusions can be tuned via the cross

section of the cylinders. Through suitable choice of the SLDs

along the cylinder, the construction allows one to model

inclusions that would cross an arbitrary fraction of the

membrane and/or possibly protrude from it (Fig. 3).

In all cases, the elastic and/or inelastic scattering cross

sections are calculated using the Fourier transform of equation

(9). This expression contains two contributions calculated

from the pre-existing membrane model, with two SLDs

corresponding to the protein-dependent average and to the

local contrast between the protein and the membrane. The

protein structure is comprehensively captured through its

Figure 8
(a) One-parameter fit of the NSE data with the Gaussian membrane
model [same data as in Fig. 1(b)]. The red surface is obtained with the
same structural parameters as the SAXS and SANS data, with fitted
diffusion coefficient D = 1.85 Å2 ns. (b) Highlighting the fit for (b1) q =
0.036 Å� 1, (b2) q = 0.071 Å� 1 and (b3) q = 0.109 Å� 1.

Figure 9
Time-dependent realization of the Gaussian random membrane model,
with structural parameters obtained from the SAXS and SANS data and
dynamic parameter D obtained from NSE data. The two shades of grey
indicate the head and chain parts of the membrane.



space and time correlation function in the membrane plane.

The versatility of the approach has been illustrated by

applying it to two qualitatively different pre-existing

membrane models, namely a slab model to analyse the SAXS

and SANS of RBC membranes, and a Gaussian model to

analyse their SAXS, SANS and NSE.

The present work has several ramifications. Higher-resolution

versions of the model could easily be produced to describe e.g.

channel proteins. This could be done by introducing two

concentric cylinders in the construction of Fig. 2, for the inner

channel and for the surrounding wall. On the experimental

side, neutron scattering length contrast between the band 3

protein and the RBC membrane proved insufficient to track

the band 3 mobility in the available NSE data. Should such

experiments be possible with a suitable contrast, the models

presented here would offer simple procedures to discriminate

in the NSE data between the contribution from the membrane

fluctuations and that from the protein mobility within the

membrane.
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Büldt, G., Gally, H., Seelig, A., Seelig, J. & Zaccai, G. (1978). Nature

271, 182–184.
Chappa, V., Smirnova, Y., Komorowski, K., Müller, M. & Salditt, T.

(2021). J. Appl. Cryst. 54, 557–568.
Dewhurst, C. D. (2023). J. Appl. Cryst. 56, 1595–1609.
Doster, W. & Longeville, S. (2007). Biophys. J. 93, 1360–1368.
Dupuy, A. D. & Engelman, D. M. (2008). Proc. Natl Acad. Sci. USA

105, 2848–2852.
Gommes, C. J. (2018). Microporous Mesoporous Mater. 257, 62–78.
Gommes, C. J. (2022). Gels 8, 236.
Gommes, C. J., Dubey, P. S., Stadler, A. M., Wu, B., Czakkel, O.,

Porcar, L., Jaksch, S., Frielinghaus, H. & Holderer, O. (2024). Phys.
Rev. E 110, 034608.

Gommes, C. J., Jaksch, S. & Frielinghaus, H. (2021a). J. Appl. Cryst.
54, 1832–1843.

Gommes, C. J., Zorn, R., Jaksch, S., Frielinghaus, H. & Holderer, O.
(2021b). J. Chem. Phys. 155, 024121.

Himbert, S., Alsop, R. J., Rose, M., Hertz, L., Dhaliwal, A., Moran-
Mirabal, J. M., Verschoor, C. P., Bowdish, D. M., Kaestner, L.,
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Himbert, S. & Rheinstädter, M. C. (2022). Front. Physiol. 13, 953257.
Jeulin, D. (2000). Stat. Comput. 10, 121–132.
Kienzle, P. (2025). Neutron activation and scattering calculator, https://

www.ncnr.nist.gov/resources/activation/.
Kinnun, J. J., Scott, H. L., Bolmatov, D., Collier, C. P., Charlton, T. R.

& Katsaras, J. (2023). Biophys. J. 122, 931–949.
Kiselev, M. A., Lesieur, P., Kisselev, A. M., Lombardo, D. & Aksenov,

V. L. (2002). Appl. Phys. A 74(Suppl. II), S1654–S1656.
Kiselev, M., Zemlyanaya, E., Ryabova, N., Hauss, T., Dante, S. &

Lombardo, D. (2008). Chem. Phys. 345, 185–190.
Krueger, S., Chen, S. H., Hofrichter, J. & Nossal, R. (1990). Biophys.

J. 58, 745–757.
Krueger, S. & Nossal, R. (1988). Biophys. J. 53, 97–105.
Krugmann, B., Koutsioubas, A., Haris, L., Micciulla, S., Lairez, D.,

Radulescu, A., Förster, S. & Stadler, A. M. (2021). Front. Chem. 9,
631277.

Krugmann, B., Radulescu, A., Appavou, M.-S., Koutsioubas, A.,
Stingaciu, L. R., Dulle, M., Förster, S. & Stadler, A. M. (2020). Sci.
Rep. 10, 16691.
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