001     1046686
005     20251129202117.0
024 7 _ |a 10.5194/essd-17-4901-2025
|2 doi
024 7 _ |a 1866-3508
|2 ISSN
024 7 _ |a 1866-3516
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03912
|2 datacite_doi
037 _ _ |a FZJ-2025-03912
082 _ _ |a 550
100 1 _ |a Kanaya, Yugo
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Observational ozone datasets over the global oceans and polar regions (version 2024)
260 _ _ |a Katlenburg-Lindau
|c 2025
|b Copernics Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764420824_1775
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a ESDE
520 _ _ |a Studying tropospheric ozone over the remote areas of the planet, such as the open oceans and the polar regions, is crucial to understand the role of ozone as a global climate forcer and regulator of atmospheric oxidative capacity. A focus on the pristine oceanic and polar regions complements the available land-based datasets and provides insights into key photochemical and depositional loss processes that control the concentrations and spatiotemporal variability in ozone as well as the physicochemical mechanisms driving these patterns. However, an assessment of the role of ozone over the oceanic and polar regions has been hampered by a lack of comprehensive observational datasets. Here, we present the first comprehensive collection of ozone data over the oceans and the polar regions. The overall dataset consists of 77 ship cruises/buoy-based observations and 48 aircraft-based campaigns. The dataset, consisting of more than 630 000 independent ozone measurement data points covering the period from 1977 to 2022 and an altitude range from the surface to 5000 m (with a focus on the lowest 2000 m), allows systematic analyses of the spatiotemporal distribution and long-term trends over the 11 defined ocean/polar regions. The datasets from ships, buoys, and aircraft are complemented by ozonesonde data from 29 launch sites or field campaigns and by 21 non-polar and 17 polar ground-based station datasets. The datasets contain information on how long the observed air masses were isolated from land, as estimated by backward trajectories from the individual observation points. To extract observations representative of oceanic conditions, we recommend using a subset of the data with an isolation time of 72 h or longer, from the analysis with coincident radon observations. These filtered oceanic and polar data showed typically flat diurnal cycles at high latitudes, whereas daytime decreases in ozone (11 %–16 %) were observed at lower latitudes. The ship/buoy- and aircraft-based datasets presented here will supplement the land-based ones in the TOAR-II (Tropospheric Ozone Assessment Report Phase II) database to provide a fully global assessment of tropospheric ozone. The described dataset is available at https://doi.org/10.17596/0004044 (Kanaya et al., 2025).
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Earth System Data Exploration (ESDE)
|0 G:(DE-Juel-1)ESDE
|c ESDE
|x 1
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Sommariva, Roberto
|0 0000-0002-2728-5814
|b 1
700 1 _ |a Saiz-Lopez, Alfonso
|0 0000-0002-0060-1581
|b 2
700 1 _ |a Mazzeo, Andrea
|0 0000-0002-7109-0934
|b 3
700 1 _ |a Koenig, Theodore K.
|0 0000-0002-3756-4315
|b 4
700 1 _ |a Kawana, Kaori
|0 0000-0002-7028-0242
|b 5
700 1 _ |a Johnson, James E.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Colomb, Aurélie
|0 0000-0002-2595-3911
|b 7
700 1 _ |a Tulet, Pierre
|0 0000-0001-5399-8730
|b 8
700 1 _ |a Molloy, Suzie
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Galbally, Ian E.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Volkamer, Rainer
|0 0000-0002-0899-1369
|b 11
700 1 _ |a Mahajan, Anoop
|0 0000-0002-2909-5432
|b 12
700 1 _ |a Halfacre, John W.
|0 0000-0002-2977-4507
|b 13
700 1 _ |a Shepson, Paul B.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Schmale, Julia
|0 0000-0002-1048-7962
|b 15
700 1 _ |a Angot, Hélène
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Blomquist, Byron
|0 0000-0002-3366-6269
|b 17
700 1 _ |a Shupe, Matthew D.
|0 0000-0002-0973-9982
|b 18
700 1 _ |a Helmig, Detlev
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Gil, Junsu
|0 0000-0002-6525-4330
|b 20
700 1 _ |a Lee, Meehye
|0 0000-0001-6622-7003
|b 21
700 1 _ |a Coburn, Sean C.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Ortega, Ivan
|0 0000-0002-0067-617X
|b 23
700 1 _ |a Chen, Gao
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Lee, James
|0 0000-0001-5397-2872
|b 25
700 1 _ |a Aikin, Kenneth C.
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Parrish, David D.
|0 0000-0001-6312-2724
|b 27
700 1 _ |a Holloway, John S.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Ryerson, Thomas B.
|0 0000-0003-2800-7581
|b 29
700 1 _ |a Pollack, Ilana B.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Williams, Eric J.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Lerner, Brian M.
|0 0000-0001-8721-8165
|b 32
700 1 _ |a Weinheimer, Andrew J.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Campos, Teresa
|0 0000-0002-7226-3569
|b 34
700 1 _ |a Flocke, Frank M.
|0 0000-0002-2661-6394
|b 35
700 1 _ |a Spackman, J. Ryan
|0 P:(DE-HGF)0
|b 36
700 1 _ |a Bourgeois, Ilann
|0 0000-0002-2875-1258
|b 37
700 1 _ |a Peischl, Jeff
|0 0000-0002-9320-7101
|b 38
700 1 _ |a Thompson, Chelsea R.
|0 0000-0002-7332-9945
|b 39
700 1 _ |a Staebler, Ralf M.
|0 0000-0002-6372-0414
|b 40
700 1 _ |a Aliabadi, Amir A.
|0 P:(DE-HGF)0
|b 41
700 1 _ |a Gong, Wanmin
|0 0000-0003-3635-0857
|b 42
700 1 _ |a Van Malderen, Roeland
|0 0000-0002-1369-8853
|b 43
700 1 _ |a Thompson, Anne M.
|0 P:(DE-HGF)0
|b 44
700 1 _ |a Stauffer, Ryan M.
|0 0000-0002-8583-7795
|b 45
700 1 _ |a Kollonige, Debra E.
|0 P:(DE-HGF)0
|b 46
700 1 _ |a Gómez Martin, Juan Carlos
|0 0000-0001-7972-085X
|b 47
700 1 _ |a Fujiwara, Masatomo
|0 0000-0001-5567-4692
|b 48
700 1 _ |a Read, Katie
|0 P:(DE-HGF)0
|b 49
700 1 _ |a Rowlinson, Matthew
|0 0000-0002-5236-6536
|b 50
700 1 _ |a Sato, Keiichi
|0 P:(DE-HGF)0
|b 51
700 1 _ |a Kurokawa, Junichi
|0 P:(DE-HGF)0
|b 52
700 1 _ |a Iwamoto, Yoko
|0 P:(DE-HGF)0
|b 53
700 1 _ |a Taketani, Fumikazu
|0 P:(DE-HGF)0
|b 54
700 1 _ |a Takashima, Hisahiro
|0 0000-0001-5267-0792
|b 55
700 1 _ |a Navarro-Comas, Mónica
|0 P:(DE-HGF)0
|b 56
700 1 _ |a Panagi, Marios
|0 P:(DE-HGF)0
|b 57
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 58
770 _ _ |a TOAR-II Community Special Issue
773 _ _ |a 10.5194/essd-17-4901-2025
|g Vol. 17, no. 9, p. 4901 - 4932
|0 PERI:(DE-600)2475469-9
|n 9
|p 4901 - 4932
|t Earth system science data
|v 17
|y 2025
|x 1866-3508
856 4 _ |u https://juser.fz-juelich.de/record/1046686/files/Kanaya_et_al-TOAR-II_Oceans.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046686
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 58
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EARTH SYST SCI DATA : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:45:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:45:47Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EARTH SYST SCI DATA : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21