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ABSTRACT: Simulating electron transfer at reactive solid−liquid
interfaces under constant electrochemical potentials of the
constituents (electrons, ions, solvent, etc.) is crucial to under-
standing the formation, function, and failure of electrochemical
devices and beyond. Albeit largely accurate in describing the
breaking and formation of chemical bonds at solid surfaces,
existing methods based on Kohn−Sham density functional theory
(DFT) are unsatisfactory in system consistency, namely, simulating
the solid−liquid interface under grand-canonical conditions, as
well as in scaling up the simulation due to its high computational
cost. Herein, to improve the system consistency and computational
efficiency, we develop density-potential functional theoretic
(DPFT) schemes out of first-principles, drawing upon ideas of
Kohn−Sham DFT, orbital-free DFT, frozen density embedding theory, and tight-binding DFT. The proposed DPFT transforms an
all-atom, Kohn−Sham DFT description of the nonreactive electrolyte solution into a coarse-grained, field-based description, while
retaining a Kohn−Sham DFT description for the reactive subsystem. As a proof of concept, a one-dimensional, orbital-based DPFT
model is presented. To reduce the computational cost further, the solid electrode can be described using orbital-free DFT, resulting
in orbital-free DPFT models. On the conceptual level, the physical meaning of potential in DPFT is examined. On the application
level, the merits and shortcomings of each scheme are compared. This work lays a theoretical basis for DPFT schemes of modeling
(reactive) solid−liquid interfaces.
KEYWORDS: solid−liquid interfaces, computational electrochemistry, electrical double layer, density-potential functional theory,
double-layer capacitance

■ INTRODUCTION
Solid−liquid interfaces are the key functional component in
supercapacitors,1−3 batteries,4−6 fuel cells,7−9 (photo)-
electrolysis cells,10−12 nanofluidic devices13,14 etc. Examples
include the carbon-aqueous solution interfaces in super-
capacitors,15,16 lithium-nonaqueous solution interfaces in
next-generation batteries,17,18 platinum-aqueous solution inter-
faces in polymer electrolyte fuel cells etc.19,20 Along with
remarkable progress in experimental characterization of these
interfaces, theory and modeling are integral to fundamental
understanding.6,21 Traditionally, models are used in inter-
pretation of experimental capacitance curves, bringing forth a
wealth of microscopic understanding of the structure of solid−
liquid interfaces.22−24 In so-called nontraditional approaches,
theory and modeling are often needed to deconvolute weak
signal of solid−liquid interfaces from much stronger noise from
the two adjacent bulk phases.25−27

Currently, a standard approach to simulate solid−liquid
interfaces is nonexistent, according to recent comprehensive
reviews on this topic.28,29 Therefore, theory and modeling of

solid−liquid interfaces is a vibrant research field with a strong
focus on method development. Methods in various flavors are
being actively developed, including but not limited to density-
functional theory (DFT) models without any solvent30 or with
a continuum description of the electrolyte solution,31−37 DFT
based molecular dynamics (MD) simulations,38−40 classical
MD simulations,3,41−43 hybrid quantum mechanics/molecular
mechanics (QM/MM) simulations,44−47 and continuum
models.23,24,48−51 Each method has its own advantages and
disadvantages, as critically reviewed by Schwartz et al.28 and
Ringe et al.29

We and others have been developing density-potential
functional theoretic (DPFT) methods to efficient modeling of
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solid−liquid interfaces.52−59 As for the solid phase, the existing
DPFT scheme adopts an orbital-free DFT for delocalized
electrons, circumventing expensive calculations of Kohn−
Sham wave functions.60−63 As for the electrolyte solution,
DPFT adopts a coarse-grained, field-theoretic treatment, like
the continuum/implicit solvation models but with important
differences. Specifically, the most recent version of DPFT
incorporates short-range correlations between solvent mole-
cules and those between solvent and ions,64−66 which are often
neglected in continuum/implicit solvation models on the
mean-field level.55 Consequently, the DPFT model can capture
oscillatory distributions of electrostatic potential and ion
densities in the liquid phase, while continuum/implicit
solvation models give rise to monotonic distributions of
these quantities. Moreover, DPFT allows us to simulate solid−
liquid interfaces with open boundaries that allow exchange of
particles, a generic term for electrons, ions and solvent
molecules in the system, with reservoirs of these particles held

at constant electrochemical potentials. The grand canonical
nature of DPFT ensures system consistency in computer
simulations of real-world experiments. Finally, the leap in
efficiency and the preservation of system consistency, together,
bring opportunities to simulate solid−liquid interfaces at
nanoparticles that are beyond reach of DFT and even cheaper
classical MD methods, see a recent example by Zhang et al.67

The purpose of this paper is 3-fold. First, we consolidate the
theoretical basis of DPFT by conducting a systematic
derivation starting from a first-principles theory. In so doing,
we formally define all approximations from many-electron
Schrödinger equation all the way down to DPFT. Second, we
examine the origin of the potential in DPFT. Specifically, we
address the conceptual question: Why do density and potential
have the same status in DPFT, while potential is expressed as
an integral function of electron density and has an inferior
status in Kohn−Sham DFT? Third, we extend DPFT from the
orbital-free scheme in previous works52−59 to orbital-based

Figure 1. Comparison of five schemes of modeling metal-solution interfaces. (a) Schematic of the metal-solution interfaces with adsorbates on the
metal surface. (b) Performances of five approximation schemes which are detailed in (c).
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schemes. This extension paves the way for modeling reactive
solid−liquid interfaces under grand canonical conditions. A
proof-of-concept example of orbital-based DPFT is presented.
The reminder of this paper is organized as follows. We first

give a short summary of the various simulation schemes
derived from the same starting point with different levels of
approximation. Then, we present a detailed derivation of these
schemes. Readers who are not interested in those technical
details may skip this part. Next, we present an implementation
of the orbital-based schema in a 1D model. After that, different
schemes are compared in terms of accuracy, system
consistency, computational efficiency and transferability. In
the end, we will conclude the main results.

■ SHORT SUMMARY
Five schemes of modeling electrified solid−liquid interfaces are
derived from nonrelativistic Schrödinger equation of many
electrons by applying a hierarchy of approximations. Key
features of these schemes are summarized in Figure 1. They
differ in the treatment of the reactive subsystem consisting of
the solid electrode and adsorbates on the solid surface, and the
nonreactive liquid environment, as depicted in Figure 1a.
These schemes are compared in four aspects: accuracy, system
consistency, computational efficiency and transferability in
Figure 1b.
The first scheme applies Kohn−Sham DFT to compute the

electronic structure of the whole interface with an all-atom
description. Main approximations include the Born−Oppen-
heimer approximation and approximations in the exchange-
correlation (XC) functional.
The second scheme employs orbital-free DFT to describe

the nonreactive liquid environment, bringing approximations
in the kinetic energy functional. This also brings forth the
problem of handling the nonadditivity of kinetic energy
functional in the boundary region between KS-DFT and OF-
DFT parts.
The third scheme does not solve the electronic density in

the nonreactive liquid environment; instead, it uses a frozen
density description to calculate the two-body interaction
potentials.
The fourth scheme represents a different category of hybrid

particle-field theoretic methods, introducing auxiliary poten-
tials to describe the two-body interactions in the nonreactive
liquid environment.68,69 The transformation from particle-
based theoretic methods to hybrid particle-field theoretic
methods allows us to properly treat the matter exchange
between the system and the environment.
The fifth scheme is different from the fourth scheme,

intended to reduce the computational cost by using OF-DFT
to simulate most atoms in the solid phase that are not directly
involved in the surface reaction.

■ SYSTEMATIC DERIVATION

Kohn−Sham Scheme

We consider a system of Ne electrons and Nn nuclei of multiple
types that are not distinguished for the moment. Following the
convention of Gross et al.,70,71 we denote the coordinates of
electrons {ri}, the mass of electrons me, the coordinates of
nuclei {Ri}, and the masses of nuclei {Mi}. We use the SI units
system throughout the paper unless otherwise noted.
Operators acting on wave functions are denoted with hat
notations.

The nonrelativistic Hamiltonian of the system is,

= + + + + + +H T T V V V U Ue n nn ne ee n e (1)

where the kinetic energy terms are,
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Coulomb interaction terms are,
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with ϵ0 being the vacuum permittivity.
The truly external potential terms, such as the voltage

applied to the system, are,
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Herein, the external potential operator acts as a multiplicative
function in that it does not differentiate or modify the wave
function, but just scales it. The hat might be dropped out for
these multiplicative operators without incurring any confusion.
No Born−Oppenheimer approximation has been assumed in

eq 1; instead, all electronic and nuclear degrees of freedom are
described quantum mechanically. The Born−Oppenheimer
approximation allows us to separate the wave functions of
nuclei and electrons for nuclei are much heavier than the
electrons. Therefore, the electronic Hamiltonian becomes,

= + + +H T V V Ue e ne ee e (9)

and the energy of the electronic part for a wave function |Ψ⟩ is
given by,

= | |E He e (10)

The total energy of the system is given by,
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with |Ψ⟩ is the electronic wave function as a function of the
nuclei coordinates {Ri}, the second term is the kinetic energy
of nuclei which are further assumed to be classical with
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momentums {pi}, the third term is the repulsive Coulomb
interaction energy between nuclei, and the last term is the
external potential energy of the nuclei.
In the density functional formalism given by Hohenberg and

Kohn,72 the electron−nucleus interaction is included, together
with the truly external potential Ûe, in an external potential
term V̂ext,

= +V V Uext ne e (12)

The electronic Hamiltonian He is written as,

= + +H T V Ve e ee ext (13)

Hohenberg and Kohn72 and later Levy73 proved that there is
a one-to-one relationship between V̂ext and the ground-state
|Ψ⟩, and that there is a one-to-one relationship between |Ψ⟩
and the ground state electron density n. Therefore, the ground
state energy of Ĥe is a functional of the electron density,

= + [ ]E d V n F nr r r( ) ( )e,GS ext (14)

where F[n] is the universal functional that is general to any
V̂ext, formally defined as,

[ ] = | + |F n T Vn ne ee (15)

where |Ψn⟩ is the ground state wave function corresponding to
the ground state density n.
Kohn and Sham proposed a decomposition scheme of

calculating Ee, GS involving a fictitious electronic system with
the same density n, however, in the absence of electron−
electron interactions other than the classical coulomb
interactions.74 The Kohn−Sham scheme transforms F[n] to

[ ] = [ ] +
| |

+ [ ]F n T n e d d
n n

E nr r
r r

r r8
( ) ( )

s

2

0
xc

(16)

where Ts[n] is the kinetic energy of noninteracting electrons in
the fictitious scheme, the second term is the classical Coulomb
energy between electrons, and the last term is the exchange-
correlation term. Exc[n] accounts for both the difference
between true kinetic energy and Ts[n], and the difference
between true Coulomb energy ⟨Ψn | V̂ee | Ψn⟩ and the classical
Coulomb energy.
Ts[n] is given by,

[ ] = | |T n f
m2i

i i rs

2

e
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i
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where |ψi⟩ is the ith orbital of the noninteracting system, and f i
is the fractional occupancy. |ψi⟩ is found from solving the
Schrödinger equation of the noninteracting system,
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with the effective potential given by,
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where the last term is a functional derivative of the exchange-
correlation term.
The spin variable is neglected in the current formalism. Spin-

dependent Kohn−Sham scheme is well documented in the
literature, e.g., the book by Dreizler and Gross.75

The occupancy f i is given by,

=
+ { }

f 1
1 exp ( )i

i e (20)

where β−1 = kBT is the inverse temperature, μ̃e is the
electrochemical potential of electrons.
The entropy of noninteracting electrons is given by, for

instance, in ref 36.
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The electron density is thus given by,

= | |n fr r( ) ( )
i

i i
2

(22)

Substituting eq 14 and 16 into eq 11, the total ground state
energy of the canonical ensemble is, within the Kohn−Sham
scheme, expressed as,
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(23)

The first two terms in the curly brackets are universal
functionals describing quantum mechanical interactions
between electrons. The third term represents the kinetic
energy of classical nuclei. The remaining terms describe
classical Coulomb interactions and external potential effects.
Note that the classical Coulomb interaction between electrons
and nuclei is included in Vext(r), in addition to the truly
external potential applied to electrons.
As well-known, the cost of computing the Kohn−Sham

scheme in the standard manner grows cubically with the
number of orbitals, or approximately, Ne. The high computa-
tional cost hinders its application to systems beyond hundreds
of atoms. Moreover, it is inefficient to statistically sample the
configuration of the nuclei in the liquid phase. Reducing the
computational cost motivates us to have a closer look at the
studied system and apply, when appropriate, additional
approximations that will not severely impair accuracy.
Hybrid Kohn−Sham and Orbital-Free Scheme
Most electrochemical reactions occur in the inner layer of the
solid−liquid interface, as shown in Figure 1. Hence, only a
small part of the whole system with formation and cleavage of
chemical bonds requires an orbital-based description. Instead,
the remaining large part could be described on the orbital-free
quantum mechanical level or even on the classical level.
Following Wesolowski and Warshel76 and many others,77−79

we divide the total system into an orbital-based reactive
subsystem with an electron density distribution nob(r) and an
orbital-free environment with an electron density distribution
nof(r). The division scheme is a key technical point in practical
applications, which is not discussed in this paper focusing on
conceptual aspects.
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The total electron density is the sum of nob(r) and nof(r),

= +n n nr r r( ) ( ) ( )tot ob of (24)

The total kinetic energy of electrons could be, without losing
any generality, expressed as,76

[ ] = [ ] + [ ] + [ ]T n T n T n T n nr r r r( ) ( ) ( ), ( )s tot s ob s,of of s
nadd

ob of

(25)

where Tsnadd[nob(r), nof(r)] is the nonadditive term. We note
that Ts,of[nof(r)] is an explicit functional of electron density in
the orbital-free subsystem, while Ts[nob(r)] is an implicit
functional of electron density and needs to be calculated using
the Kohn−Sham scheme, now with a modified effective
potential to be determined shortly.
Practical calculations need an approximate Tsnadd that is an

explicit functional of nob and nof. Usually, Tsnadd is obtained from
the same functional for Ts, of[nof(r)],

76,77

[ ] [ ]

= [ ] [ ] [ ]

T n n T n n

T n T n T n

, ,s
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ob of s,of
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ob of
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|ψi⟩ob of the orbital-based subsystem is found from solving
the Schrödinger equation of the noninteracting subsystem,76,80
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with the effective potential applied on the orbital-based
subsystem given by,
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where the approximate, explicit Ts, ofnadd defined in eq 26 is used
here.
Now the total grand state energy is given by
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The electron density in the orbital-free subsystem is found
from using the constraint of the electrochemical potential of
electrons μ̃e,

[ ] =

=
[ ]

+
[ ]

+
[ ]

+
| |

+

N N
E

n

T n

n

T n n

n
E n

n

e d
n

Vr
r

r r

,

,

4
( )

e e n
tot,GS

of

s,of of

of

s,of
nadd

ob of

of

xc tot

of
2

0
ext

(30)

There is a key difference between the present hybrid Kohn−
Sham and orbital-free theory and the frozen electron density
functional theory developed by Wesolowski and Warshel.76 In
the present scheme, the electron density in the orbital-free
region is not frozen but calculated from eq 30. Since orbital-
free DFT is a linear scaling method, the computational cost is
much lower than the original Kohn−Sham scheme.
If the whole system is described on the orbital-free level,

which is a reasonable approximation for cases without chemical
bond formation and cleavage at the interface, the electron
density is then found from,

[ ] =
[ ]

+ [ ] +
| |

+

N N
T n

n
E n

n
e d

n

V
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r

r r
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4
( )

e e n
s,of xc

2

0

ext (31)

which is a partial differential equation if Ts,of[n] and/or
Exc[n] contain gradient terms. Thomas−Fermi−von Weizsac̈k-
er functional was used for Ts,of and Perdew−Burke−Ernzerhof
(PBE) functional for Exc in our previous DPFT models, leading
to a second-order partial differential equation of n, see eq 50 in
ref 55.
Hybrid Kohn−Sham and Frozen Density Embedding
Scheme
The next approximation scheme involves equaling nof with the
frozen density associated with atoms in the orbital-free
subsystem. This removes the need for calculating nof,
facilitating efficient statistical sampling of the electrolyte
solution. All electronic polarization in the orbital-free environ-
ment is described using empirical parameters, such as the
electronic permittivity, in the frozen electron density
approximation.
The composition of a nucleus and its associated frozen

electron density is termed as pseudoatoms so-called because
they might not be electroneutral. A molecule is an assembly of
two or more pseudoatoms. Assigning each pseudoatom at Ri
with a frozen electron density nifrozen(r, Ri), nf in the orbital-free
environment is then calculated as the sum of all pseudoatoms,

=
=

n nr r R( ) ( , )
i

N

i if
1

frozen
n

(32)

Barker and Sprik used Gaussian functions for nifrozen(r, Ri).
81

Substituting nf(r) in the orbital-free kinetic energy functional
and exchange-correlation functional, we could then calculate
the total energy of the orbital-free environment. This is the
basic idea of the hybrid Kohn−Sham/frozen density orbital-
free method developed by Hodak, Lu, and Bernholc for large
biological systems.78

Two-Body Pairwise Interactions in Both Short and
Long-Range
Following the idea of semiempirical tight-binding meth-
ods,82−84 we could transform the total energy of the orbital-
free environment into one-body and two-body pairwise terms.
The transformation could be made formally exact, as in the
perturbation analysis given by Foulkes and Haydock.82

Nevertheless, approximation and parametrization are often
required in practical applications.
Classical Coulomb interactions between charged particles, a

generic term for electrons, nuclei and pseudoatoms, are
pairwise and have been separately considered. We only need
to approximate the quantum mechanical interactions between

ACS Physical Chemistry Au pubs.acs.org/physchemau Article

https://doi.org/10.1021/acsphyschemau.5c00071
ACS Phys. Chem Au 2025, 5, 672−686

676

pubs.acs.org/physchemau?ref=pdf
https://doi.org/10.1021/acsphyschemau.5c00071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


pseudoatoms as pairwise interaction potentials, which is more
short-ranged compared to the classical Coulomb interactions.
From now on, we will need a more detailed notion of the

constituent particles of the system. The orbital-based reaction
subsystem is composed of electrons with number density n(r)
and nuclei with number density of nα(r) of which the
corresponding operator is given by,

=
=

n r r R( ) ( )
i

N

i
1

,
(33)

where Nα is the total number of nuclei of type α in the orbital-
based reactive subsystem, and Rα, i is the coordinate of the ith
nuclei of this type. There are usually multiple types of nuclei in
the orbital-based reactive subsystem. Take chemisorption of an
ion on a metal surface as an example. There are at least two
types of nuclei, namely, the nuclei of the metal atoms and
nuclei of the chemisorbed ion. We designate the nuclei of
metal atoms collectively as α = M, and the nuclei of adsorbates
as α = A.
In a coarse-grained picture, the orbital-free environment is

composed of cations and anions with number densities of nc(r)
and na(r), respectively, and solvent molecules with number
density of ns(r). We consider only one type of cations and
anions and solvent in this work to avoid the notations
becoming exceedingly complicated. However, the extension to
multiple types of these particles seems straightforward.
The local charge density containing electrons and nuclei in

the orbital-based reactive subsystem is collectively expressed
as,

= + + ·
=

en Z en p nr r r r( ) ( ) ( ) ( ) ( )
M,A,c,a

s s
(34)

where ps is the dipole moment of solvent molecules, i.e., the
vector pointing from the centroid of the positive charge to that
of the negative charge within a solvent molecule. The third
term (ps · ∇)ns(r) in this equation represents the polarization
charge density contributed by inhomogeneous orientational
polarization field of solvent molecules.
Therefore, the total energy of the whole system is written as,

= [ ] + [ ] + [{ } ] + +E E n E E n n E E,tot
GS

qm
GS

es sr kin ext

(35)

where EqmGS[n] is the ground state electronic energy of the
orbital-based reactive subsystem,

[ ] = [ ] + [ ] + |E n T n E n U nqm
GS

s xc e (36)

and we use Dirac’s bracket notation throughout this work

| =x y d x yr r r( ) ( )

| | =x O y d d x O yr r r r r r( ) ( ) ( ) (37)

Ees[ρ] is the classical electrostatic energy between all
charged particles,

[ ] = | |E G
1
2es (38)

with = | |G r r( )
r r

1
4

being the Green function of the
Poisson equation, and ϵ the electronic permittivity of the
dielectric media, which should be distinguished from the total

permittivity that further includes the inertial permittivity
associated with orientational polarization of solvent molecules.
Esr[{nα}, n] is the short-range, pairwise interactions between

electrons, ions and solvent molecules,

[ ] = | | + | |
= =

E n V n n W n
1
2sr

c,a,s , c,a,s (39)

where V̂α(r − r′) describes the short-range interactions
between electrons and particles in the orbital-free environ-
ment, of which the number density is collectively denoted as
nα. Ŵαγ(r − r′) are the short-range pairwise interactions
between particles of α and γ types in the orbital-free
environment. It is understood that the summation sign runs
over ions (α, γ = a, c) and solvent molecules (α, γ = s).
Ekin is the classical kinetic energy of ions and solvent,

=
= =

E
M

p( )

2i

N
i

kin
c,a,s 1

,
2

(40)

where Mα is the mass of particles of type α.
Eext is the energy term corresponding to external potentials

applied on ions and solvent,

= |
=

E U next
c,a,s (41)

It is understood that the summation sign runs over ions and
solvent molecules.
Grand-Canonical Ensemble
After obtaining the total energy of the canonical ensemble, we
proceed to treat the grand canonical ensemble. The electro-
chemical potentials of electrons, adsorbates, ions, and solvent
molecules are denoted μ̃e, μ̃A, {μ̃α} and μ̃s. The number of
metal atoms in the orbital-based reactive subsystem is fixed.
The partition function of the grand canonical ensemble is

approximated as,

= e n (42)

where the electronic partition function over the wave function
space is

=
=

| + + |e e
N

N T V U
e

1 N

N N

e

e e

e

e e ee e e

(43)

where Ne = ∫ drn(r) is the total number of electrons, ΨNde
is

the electronic wave function of the system with Ne electrons.
A basic relationship in statistical thermodynamics relates the

partition function of a grand canonical ensemble Ξ to its grand
potential Ω

= k T logB (44)

Since we have known the grand potential of the electronic
part,

= [ ] + [ ] + [ ] [ ]T n E n U n TS n d nr r( )e s xc e e e

(45)

the electronic partition function is obtained as,

= { [ ]+ [ ]+ [ ] [ ] }e T n E n U n TS n d nr r
e

( )s xc e e e (46)

The nuclear partition function over the momentum and
coordinate space is,
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i i

n
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(2)
sr
(2)

ext
(1)

(47)

where λα is the thermal de Broglie wavelength, resulted from
the integration over the momentum space of classical ions and
solvent molecules, dΩα, i is the solid angle differential

=d d d
sin

4i
i

i i,
,

, , (48)

where
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ0,i, 2
is the colatitude and φα, i ∈ [0,2π] the

longitude of the solid angle. The denominator of 4π normalizes
the volume integration of dΩα, i to one.

Θes
(2) is the two-body electrostatic interaction term,

= | |e G
es
(2) /2 (49)

Θsr
(2) is the two-body short-range interaction term,

= | |e n W n
sr
(2) /2 , (50)

and Θext
(1) is the one-body external term

= { + | }|e U n V n
ext
(1) (51)

Particle to Field Transformation

Till here, formalism is a density-based one since all energy
terms are expressed as a function of particle densities and
coordinates of the particles. The overarching objective of
particle-based approaches, including Kohn−Sham DFT,
molecular dynamics and Monte Carlo simulations, is to either
determine the coordinates of these particles under stationary
conditions or sample the trajectories of these particles under
dynamic conditions.85 Using Hubbard−Stratonovich (HS)
transformation, we could transform the two-body interaction
term to one-body terms interacting with auxiliary potentials,
which is a well-documented approach in the literature, see the
recent book chapter by Budkov and Kalikin,86 and also Bruch
et al.87 This transformation leads to field-based approaches, of
which the objective is to determine the stationary distributions
of auxiliary potentials or track the evolution of the auxiliary
potentials.85

Following Budkov and Kolesnikov,88 we have,

= =| |
| | + |

| |

D

D
e

e

e

G
G i

Ges
(2) /2

/2

/2

1

1

(52)

where φ(r) is an auxiliary potential corresponding to the
charge density ρ(r), and Ĝ−1(r − r′) is the inverse Green
function, defined as,

=d G Gr r r r r r r( ) ( ) ( )
1

(53)

and Ĝ−1(r − r′) = − ϵ∇2δ(r − r′).
Similarly, for the short-range interaction term, we have,

=

=

| |

| | + |

| |

D

D

e

e

e

n W n

W i n

W

sr
(2) /2

/2

/2

,

,
1

,
1

(54)

where ψα(r) is the corresponding auxiliary potential, and
Ŵαγ

−1(r − r′) the inverse potential, defined as

=d W Wr r r r r r r( ) ( ) ( )1

(55)

Unlike Ĝ−1, Ŵαλ
−1 does not have an explicit expression in

most cases except for the Morse potential according to
Weyman et al.89

After the Hubbard-Stratonovich transformation, the grand
partition function is now written as,

= + | |

| |

c D

D

e e

e

di e n Z n G

W

r
n

( ) /2

/2

M M
1

,

1

!= = =

R

N

d de

N

N

i

N
i i

A,s,c,a 1 1

, ,
3

(1)

(56)

where the normalizing terms in eqs 52 and 54 are included in
the prefactor c, and the one-particle terms are now included in
the last term Θmod

(1) ,

= { + | + + }|e U n V i i Z e n(1) (57)

for ions (α = a, c) and adsorbates (α = A), and

= { + | + + · }|e pU n V i i n
s
(1) ( )s s s s (58)

for solvent molecules.
For ions and adsorbates (α = A, a, c), the integration over

the solid angle is one, and we have
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=
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(59)

Noting = =n r r R( ) ( )i
N

i1 , and the indistinguishabil-
ity of particles of the same species, we manipulate eq 59) into,

{ }!

=

=

{ + | + + }

+ | + +( )
N

d

d

r

r

e
e

exp e e

N

N

N
U n V i i Z e

N

U n V i i Z e

0
3

3 ( )
(60)

This transformation is derived from the standard Maclaurin

series of the exponential function = = !e N N
x

0
x N

and Nα is
summed out in the grand partition function as the grand
potential should not be a function of the numbers of
constituents.
Similarly, following the well-known procedure of integrating

out the solid phase space for dipole moment, see, for instance,
Bruch et al.,87 the solvent term is put into,
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Taking together, the grand partition function is written as,

= [ { } { }]D D S nexp( , , , ) (62)

with the action,

[ { } { }] = [ ] + + +{ }S S n S S S, , qm sp (63)

where the quantum mechanical action is,

[ ] = [ ] + [ ] + [ ] [ ]S n T n E n U n TS n d nr r( )qm s xc e e e

(64)

the action corresponding to the auxiliary potential φ is

= | |S G
1
2

1

(65)

which could be transferred to,

=S dr
1
2

( )2
(66)

using the integration by parts formula and the condition of φ
= 0 at the surfaces, see Bruch et al.87

The action corresponding to the auxiliary potentials {Φα} is

= | |{ }S W
1
2 ,

1

(67)

and the single-particle action is,

= +

=
+ | + +

+ | + + | |
| |

d

d

d
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i ps s s s
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(68)

Mean-Field Approximation to the Grand Potential
The grand potential is defined as,

= ln1 (69)

The electrostatic potential ϕ is defined as,87

=
[ ]

= iaux

aux (70)

where Ω[ρaux] is the grand potential in the presence of an
auxiliary charge density ρaux. We denote the statistical average
of a quantity a is defined as,

= [ { } { }]a D D a
1

e S n, , ,
(71)

Similarly, we define real-valued potentials corresponding to
ψα,

= i (72)

Next, we adopt saddle-point approximation and solve
distributions of ϕ and Φα, see a pedagogical introduction by

Wang.90 According to the saddle-point approximation, the
grand partition function, which is an integral of the fluctuating
potentials ϕ, {Φα}, is contributed dominantly by the zone near
the minimum of S[n, ϕ, {Φα}, {μ̃α}],

[ { } { }]S n, , , (73)

up to a constant that is independent of n, ϕ, {Φα}, {μ̃α}.
The number densities are given by,

= = + | + +n e e U n V Z e3 ( )

(74)

for α = A, c, a, and,

= =
| |

| |
+ | +n

p

p
e e

sinh( )U n V
s

s
s

3 ( ) s

s

s s s s

(75)

These {μ̃α} could be determined from bulk conditions nα
0

and ns0, which will be discussed in the Boundary Conditions
section.
The task is now to find distributions of ϕ, {Φα} to minimize

S[n, ϕ, {Φα}, {μ̃α}] under prescribed conditions of {μ̃α}. We
obtain a set of variational field equations,

[ { } { }]
=

S n, , ,
0

(76)

[ { } { }]
=

l
moo
noo

|
}oo
~oo

S n, , ,
0

(77)

Variational analysis translates eq 76) to a modified Poisson−
Boltzmann equation,91−93

+
| |

| |

= + +
=
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jjjj

y
{
zzzz

p n
L p

n Z n e Z en
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( )

s s
s

M M
A,a,c (78)

whe r e L i s t h e so - c a l l ed Langev in func t i on ,
=L x x( ) coth( )

x
1 .

Similarly, we have the following equation for the steric
potentials,

| | + =W W n
1
2

01 1

(79)

The EDL is often polarized to be composed of counterions
of the same type. This leads to the approximation of only
considering short-range interactions between particles of the
same type. In this case, eq 79 is simplified to,

| + =W n 01 (80)

Following Weyman et al.,89 we consider only the repulsive
part of the Morse potential,

=W r dr( ) exp( 2 ( )) (81)

where σαα, ξαα, and dαα are Morse parameters.
Weymann et al. gives,89

= [ + ]W fr r r r( ) ( ) 8 ( ) 16 ( )1 4 2 2 4
(82)

with fαα = (16πσααξαα exp (2dααξαα))−1.
The fourth-order differential equation for Φα is given by,
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+ = f n8 164 2 2 4 1
(83)

It is noted that eq 83 has a real screening length = 1
2
,

originating from the pairwise, short-range ionic interaction.
There exist other approaches to describe ionic correlation
effects. For example, the Bazant-Storey-Kornyshev (BSK)
theory94 phenomenologically describes ionic correlation
using a fourth-order modified Poisson−Boltzmann equation.
Similarly, built upon classical density functional theory, the
interfacial layering theory of de Souza et al.2 expresses the
electrostatic free energy in terms of a smeared charge density
expansion. This approach systematically incorporates both
second- and fourth-order spatial derivatives into the dielectric
screening operator, allowing for more oscillator modes to be
included. In short, both treatments capture ionic correlation
effects by introducing higher-order dielectric response. In
contrast with these two approaches, our treatment transforms
ion−ion pairwise short-range interaction directly into the steric
potential governed by an additional fourth-order PDE.
In short summary, the equilibrium structure of the metal-

solution interfaces is now determined by three interconnected
controlling equations: (1) the Kohn−Sham equations in eqs
27 and 28 for electron density, (2) the modified Poisson−
Boltzmann equation in eq 78 for electrostatic potential, and
(3) the high-order differential equation in eq 83 for the steric
potential. The boundary conditions to close these controlling
equations are specified in the next section.
Boundary Conditions

Let us consider a metal-solution interface in a three-
dimensional space with Cartesian coordinates. Let x be the
direction perpendicular to the metal-solution interface, and y
and z the other two directions in which the system is

symmetrical. Therefore, the potentials ϕ and Φα and the wave
functions ψi are symmetrical in all boundaries in x, y directions,
denoted ∂Ωy, z,

| = 0
y z, (84)

| = 0
y z, (85)

| = 0i y z, (86)

We place the metal on the left side and denote the left
boundary in the x dimension as ∂Ωx,L. The electrolyte solution
is placed on the right side and the right boundary in the x
dimension is denoted as ∂Ωx,R. Due to the symmetric
arrangement along ∂Ωx,L, we have the following symmetric
boundary conditions

| = 0
x L, (87)

| = 0
x L, (88)

| = 02
x L, (89)

| = 0i x L, (90)

We need two boundary conditions for Φα that is governed
by a fourth-order partial differential equation. Equations 88
and 89 are natural as there are no electrolyte particles in the
metal phase.
The electrolyte solution is thick enough to reach bulk

conditions at ∂Ωx,R. We set the reference for the electric
potential at ∂Ωx, R, namely,

| = 0
x R, (91)

Figure 2. Basic numerical results of the proof-of-concept model at EF = − 2 eV: (a) distributions of the first five electron energy levels Ei, (b)
distributions of first five normalized wave functions ψ̅i (offset for visualization), (c) spatial distribution of relative effective dielectric permittivity

=eff
eff

0
, and (d) dimensionless distributions of metal nuclei density and electron density with sub-band contributions.
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We assume Φα to be uniform in the electrolyte solution
bulk, namely,

| = | = 02
x R x R, , (92)

Therefore, the value of Φα at ∂Ωx, R is determined from the
controlling eq 83,

| =
f

n1
16 4

0
x R,

(93)

with nα
0 the bulk concentration.

The probability of finding metal electrons at ∂Ωx, R is zero,

| = 0i x R, (94)

Having specified the conditions of the electrolyte solution,
we can determine μ̃α from eqs 74 and 75,

= + + |n Uln( ) ( )1 3
x R, (95)

for α = A, s, c, a.
Proof-of-Concept Example of the Fourth Scheme
Here, we present a proof-of-concept implementation of the
fourth scheme, where metal electrons are described using
Kohn−Sham DFT and the electrolyte solution using statistical
field theory. The other two dimensions of the metal-solution
interface are considered to be uniform and only the
perpendicular dimension x is calculated, see more details in
the method section.
Figure 2 presents numerical results at Fermi energy EF = − 2

eV. Figure 2a shows the first five electron energy levels Ei with
increasing energy gaps. Figure 2b shows the corresponding
normalized wave functions ψ̅i. The wave functions for all

energy levels are constrained to zero at the right boundary in
the x-dimension. For visual clarity, a vertical offset is applied to
each ψ̅i along the y-axis. Figure 2d displays the cumulative
dimensionless electron density n̅e (Ei) for the first i energy
levels. By summing up the contributions of all energy levels, we
obtain the electron density result (black, solid line in Figure
2d). Friedel oscillations are observed arising from the quantum
interference effects in wave functions.
Figure 3 shows the numerical results for cation/anion

distributions, and corresponding steric potentials at μ̃e = − 2.0
eV, where the electrode is highly negatively charged with
cation accumulation at the interface. This interfacial accumu-
lation is driven by the negative surface electric potential (see
Figure 3c), but is partially suppressed due to the steric
repulsion, as shown in Figure 3b.
In this case, the surface free charge density for the EDL is

defined as

= =
+ +

n n e dx
e
a

n n dx( ) ( )a a cfree
0

c 0
0

0
2 0

where the x range is from metal bulk to solution bulk and the
second term is the definition in dimensionless form.
When calculating at a series of electrode potentials μ̃e,

double layer capacitance Cdl curve can be obtained by
differentiating surface free charge density σfree with electro-
chemical potential of electrons, i.e. =C edl 0

free

e
. The

minimum of Cdl here indicates the potential of zero charge.
Figure 3d shows the double layer capacitance curves in the
range of μ̃e from −2.1 to −3.2 eV. It gives the potential of zero
charge at μ̃e = −2.6 eV. Compared with the model result

Figure 3. Basic results of 1D EDL model at μ̃e = −2 eV: (a) distribution of cation/anion density referenced to the solution bulk density, (b) steric
potential distribution of cations and anions, (c) distribution of electric potential, and (d) double layer capacitance curves (gray: without steric
effect, black: with steric effect).
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without steric effect, Cdl decreases due to steric repulsion
between ions of the same type. The suppression is especially
pronounced when the electrode is highly charged due to strong
steric potentials at interface, presenting a less sharp “V-shaped”
Cdl curve, as shown in Figure 3d.

■ DISCUSSION AND CONCLUDING REMARKS
Five approximation schemes can be drawn out from the
preceding theoretical analysis. Figure 1 summarizes these five
schemes, and Figure 1b compares them in four dimensions,
namely, accuracy, system consistency, computational efficiency
and transferability. By system consistency we mean how well
the scheme treats the grand canonical nature of EDL and the
statistical sampling of the electrolyte solution. We divide them
into particle- and field-based approaches, c.f., a comparison
between these two approaches by Lequieu.85 Particle-based
approaches simulate the system directly based on particle−
particle interactions. In comparison, field-based approaches
introduce a fluctuating auxiliary field, transforming particle−
particle interactions into particle-field interactions. The key
advantage of field-based approaches to model EDL lies in
preserving the system consistency and increasing the
simulation efficiency at the cost of less atomic structure
information.
The first scheme describes both solid electrode and

electrolyte solution on the level of Kohn−Sham DFT. The
approximations involved in this scheme include the Born−
Oppenheimer approximation to decouple the wave functions
of atom nuclei and electrons, and the approximations in the
exchange-correlation functional of many interacting electrons.
The controlling equation of this scheme is the Kohn−Sham
equation expressed in eq 17, supplemented by relationships
expressed in eqs 19−22. As shown in Figure 1b, this scheme
has the highest accuracy among the five schemes. However,
since it belongs to the type of particle-based simulation and
since it requires solving wave functions at a cost that scales
cubically with the number of atoms, it is usually employed to
smaller systems with hundreds of atoms. Therefore, it is
nontrivial to sufficiently sample the electrolyte solution
statistically, and to simulate an open system with varying
particle numbers during a simulation. We refer interested
readers in simulating open systems to a comprehensive review
by Delle Site and Praprotnik.95 This scheme is appealing for
modeling interfacial chemical reactions at atomic/molecular
scale. This scheme is generally applicable for interfaces formed
at both metals and semiconductors in contact with various
electrolyte solutions, such as water-in-salt electrolytes, polymer
electrolytes, or ionic liquids.
The second scheme uses OF-DFT to describe the electrolyte

solution, while the reactive metal surface remains treated using
KS-DFT as in the first scheme. The set of controlling
equations include eq 27 for the orbital-based reactive part,
and eq 30 for the orbital-free nonreactive environment. An
OF-DFT treatment of the electrolyte solution significantly
reduces the computational cost of the system because the
electrolyte solution has a much longer screening length and
hence much thicker in the simulation cell than the solid
electrode. Computational efficiency comes at the cost of lower
accuracy, however, due to the approximate kinetic energy
functional in the OF-DFT.60−63 The errors of OF-DFT also
spread to the reactive metal−adsorbate subsystem via
introducing an auxiliary potential in the KS-DFT due to the
nonadditivity of kinetic energy functional.76,79 However, since

no chemical reaction occurs in the electrolyte solution, we
might hope that the accuracy issue of OF-DFT is not too
severe thanks to error cancellation. In terms of system
consistency, the second scheme remains a particle-based
approach, retaining the challenge of simulating grand-canonical
open systems. In terms of applications, provided with careful
benchmarks, the second scheme has no apparent restrictions
on the type of electrode and electrolyte materials.
The third scheme avoids calculating the electronic structure

of the electrolyte solution; instead, it uses frozen densities for
ions and solvent molecules to describe two-body interactions.
This leads to a major reduction in the computational cost.
However, a frozen density description eliminates the capability
of considering dynamic polarization in the electron density of
the electrolyte solution, impairing the accuracy of describing
the electrolyte solution.96 A key difference between the second
and third scheme is that the electron density in the electrolyte
solution is solved using OFDFT in the second scheme while it
is not solved but directly assigned in the third scheme. Hodak,
Lu and Bernholc (HLB) developed a simulation method for
biological systems, integrating KS-DFT for the chemically
active part, including the first solvation shell, of the system and
frozen-density orbital-free DFT for the rest.78 As an earlier
example of the third scheme, the HLB method aims at
resolving the disadvantage of QM/MM methods in treating
the interactions between the chemically active core and the
environment, improving over the oft-used electrostatic-
embedding method. Like the second scheme, this scheme
enjoys wide applications, provided systematic benchmarks of
the OFDFT used.
Distinct from the first three schemes, which are density

functional theoretic (DFT) approaches, the fourth scheme
represents a hybrid density-potential functional theoretic
approach (DPFT). The essential difference between DFT
and DPFT lies in the status of electrostatic potential compared
to density. In particle-based approaches, charge density of
nuclei is predetermined at each (imaginary) time step and the
electrostatic potential becomes a dependent function, governed
by the Gauss’s law, of the electron density distribution. On the
contrary, in a hybrid particle-field based approach, the
electrostatic potential is a primal variable that has the equal
status of the electron density.
Switching from a particle-based approach to a hybrid

particle-field approach, we have changed the status of
electrostatic potential from a dependent variable of electron
density to an independent variable. This essence of this change
lies in the Hubbard-Stratonovich transformation, where the
fluctuating potential is introduced as an independent degree of
freedom in the integration expressed in eq 52. We note that the
potential of DPFT could be plural. For instance, additional
auxiliary potentials corresponding to the short-range inter-
actions between electrolyte particles are introduced in eq 54.
As an additional note, DPFT is not limited to, though it can be
as in the fifth scheme, a pure orbital-free method.
DPFT shares the same spirit with the hybrid particle-field

theoretic approaches developed by Fredrickson et al. for
polymer physics.68,69,97 As a key difference with hybrid
particle-field theoretic approaches which are currently purely
classical, DPFT is a semiclassical approach as it also describes
electrons quantum mechanically.
The fourth scheme belongs to the group of continuum/

implicit solvation models, such as the joint DFT method
developed by Letchworth-Weaver and Arias.35 The key
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difference lies in the formulation of the grand potential.
Previously, the grand potential was constructed with a higher
degree of empiricism, namely, by adding a quantum
mechanical part and a classical part for the electrolyte solution
that is usually described on the level of (modified) Poisson−
Boltzmann theory. In addition, a solvation cavity is introduced
to account for short-range repulsion between the quantum
mechanical part and the electrolyte solution, see discussions in
Schwartz et al.28 and Ringe et al.29 In contrast, a rigorous
statistical treatment of the degrees of freedom of nuclei,
including both long-range electrostatic interactions and short-
range interactions, is given in the fourth scheme of the present
work. Auxiliary potentials Φα, governed by fourth-order partial
differential equations, are introduced to describe the short-
range interactions. Consequently, crowding effect of ions can
be captured in the present scheme. Therefore, it is appealing
for simulating EDLs in highly concentrated solutions such as
ionic liquids and water-in-salt electrolyte. Similarly, since the
polymer electrolyte can also be described in terms of both
long-range Colomb interaction and short-range interactions
between chains,98 the fourth scheme is thus generally
applicable for polymer electrolytes.
Though the DOF of the electrolyte solution has been

averaged out in the fourth scheme, expensive KS-DFT limits
the fourth scheme to small systems with less than hundreds of
atoms in the metal−adsorbate part. Its applications include
metal slabs and clusters, but nanoparticle catalysts are beyond
reach. One can further reduce the computation cost by
employing OF-DFT to describe most metal atoms that are not
directly involved in reactions. This hybrid KS/OF-DFT
approach could, in principle, allow us to simulate the reactive
EDL at nanoparticles with a decent accuracy-efficiency balance.

■ METHODS
An in-house numerical scheme of consistently solving Kohn−Sham
DFT and modified Poisson−Boltzmann equation will be published
elsewhere.99 The slowly varying limit of Perdew−Burke−Ernzerhof
(PBE) exchange-correlation potential is used in Kohn−Sham DFT,
and steric potentials for cation−cation pairs Φc and anion−anion
pairs Φa are considered.
The proof-of-concept model is implemented in MATLAB R2024b.

Finite Difference Method is used to calculate the second-order PDE
in Kohn−Sham equation. To solve the modified PB equation self-
consistently, we decompose the fourth-order partial differential
equation (PDE) for steric potentials in eq 83 into two second-order
PDEs:

=2

+ = f n8 162 2 4 1

where α = a, c for anions and cations, respectively.
Five variables Φ̅a, ζa̅, Φ̅c, ζc̅, ϕ̅ in the modified PB equation (eq 78)

are introduced. Using the Newton−Raphson iteration method,99 the
variables can be solved simultaneously by constructing Jacobian
matrix of size 5N × 5N. From a numerical perspective, though the
order decomposition increases the matrix size, it makes the matrix
more diagonally dominant and sparse, saving the computational cost.
At each step, the variable matrix is updated with a weight factor w =
0.6 to avoid overshooting and enhance convergence stability.
The toy model is designed to demonstrate the feasibility of the

fourth scheme. The parameters are not obtained from more accurate
methods or experimental sources but are assigned with reasonable
values. However, for a specific solid−liquid interface, the parameters
can be obtained from the following two ways: (1) benchmarking with
experimental data such as the differential double-layer capacitance

curves, (2) benchmarking with high-level computations such as ab
initio molecular dynamics simulation. Examples of benchmarking can
be found in our previous studies54,55,100

LM and LS denote dimensionless thicknesses of the metal (from
bulk to edge) and electrolyte solution, respectively. Here, we use LM =
20 and LS = 30, normalized to the Bohr radius a0 = 0.529 Å. For the
metal, the dimensionless metal nuclei n̅M = nM · a03 is set to 0.01 with
valence of 1, namely, ZM = 1. For the electrolyte solution, we use nc, a0

= 100 mM, Zc = 1, Za = −1, representing 1−1 electrolyte, such as KF,
with a 100 mM bulk concentration. Solvent and adsorbates are not
considered explicitly in this prototypical example. We thus replace the
term + | || | L p( )

p n
s

s s in eq 78 with a field-independent ϵeff. The

spatial distribution for ϵeff with respect to vacuum permittivity ϵ0 is
shown in Figure 2c. At metal bulk, ϵeff = 3ϵ0. It slightly increases in the
metal-solution interfacial region and reaches 78.5 ϵ0 to simulate
aqueous solvent.
Short-range interactions between electrons and ions ⟨n | Vα=c, a⟩

and between ions of the same type Wαα=cc for cations and Wαα=aa for
anions are considered. Similar to the expression in eq 81, ⟨n | Vα=c, a⟩
is modeled using the repulsive term of Morse potential, i.e., ⟨n |
Vα=c, a⟩ = σc, a exp (− 2ξc, a(r − dc, a)). Here we set σc, a = 0.5/6 eV,
βc, a = 1/a0, dc, a = 4a0. As for Wαα=cc, aa, we use σcc, aa = 0.05 eV, βcc, aa
= 0.5/a0, dcc, aa = 6a0. The equilibrium distance between ion pairs
dcc, aa is set to be larger than the equilibrium gap between ions and
metal electrode dc, a.
This proof-of concept example simulates the EDL under fixed

Fermi level, equivalently under constant electrode potentials. The
voltage applied onto the electrode is a component of the
electrochemical potential of electrons, namely, the Fermi level. In
other words, the external potential is embedded into the Fermi level
and thus implicitly considered.
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