001046697 001__ 1046697
001046697 005__ 20250930145101.0
001046697 0247_ $$2doi$$a10.1149/1945-7111/ade0ef
001046697 037__ $$aFZJ-2025-03917
001046697 082__ $$a660
001046697 1001_ $$0P:(DE-Juel1)179453$$aSchalenbach, Maximilian$$b0
001046697 245__ $$aAccelerated Iridium Dissolution in Proton Exchange Membrane (PEM) Water Electrolyzers by Inert Mobile Anions Adsorbed in the Double Layer
001046697 260__ $$aBristol$$bIOP Publishing$$c2025
001046697 3367_ $$2DRIVER$$aarticle
001046697 3367_ $$2DataCite$$aOutput Types/Journal article
001046697 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759236604_11292
001046697 3367_ $$2BibTeX$$aARTICLE
001046697 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046697 3367_ $$00$$2EndNote$$aJournal Article
001046697 520__ $$aIridium oxides display state-of-the-art electrocatalysts for anodes in proton exchange membrane water electrolyzers (PEM-WE), combining electrocatalytic activity for the oxygen evolution reaction (OER) and reasonable stability. During OER with liquid electrolytes, iridium dissolution rates were reported as orders of magnitude higher than those of operating PEM-WE cells, while the reasons for these differences are not well understood. Here, iridium oxide dissolution in an operating PEM-WE cell is examined with different feeds, including pure water, 0.1 M sulfuric acid, and 0.1 M perchloric acid. With sulfuric acid feed, the electrically contacted iridium oxide at the anode is found to dissolve within 22 h. In comparison, the dissolution rates with perchloric acid addition and pure water are approximately 120 and 1500 times smaller, respectively. These differences are explained with a novel theory that correlates the influence of inert mobile anions on dissolution rates by their adsorption in the electrochemical double layer. This physicochemical effect also explains previously reported discrepancies of reported iridium dissolution rates with different electrolytes. Based on the results, the quality of the feed water in terms of inert anion pollution is highlighted as a critical factor for achieving long life of PEM-WE cells with low iridium loadings.
001046697 536__ $$0G:(DE-HGF)POF4-1232$$a1232 - Power-based Fuels and Chemicals (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001046697 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
001046697 7001_ $$0P:(DE-Juel1)190997$$aWolf, Niklas$$b1$$ufzj
001046697 7001_ $$0P:(DE-Juel1)184377$$aPoc, Jean-Pierre$$b2$$ufzj
001046697 7001_ $$0P:(DE-Juel1)191252$$aHeume, Christine$$b3$$ufzj
001046697 7001_ $$0P:(DE-Juel1)180432$$aBasak, Shibabrata$$b4
001046697 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b5
001046697 7001_ $$0P:(DE-Juel1)191359$$aKarl, André$$b6
001046697 7001_ $$0P:(DE-Juel1)161579$$aJodat, Eva$$b7
001046697 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8$$ufzj
001046697 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/ade0ef$$n6$$p064509$$tJournal of the Electrochemical Society$$v172$$x0013-4651$$y2025
001046697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179453$$aForschungszentrum Jülich$$b0$$kFZJ
001046697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190997$$aForschungszentrum Jülich$$b1$$kFZJ
001046697 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)190997$$aRWTH Aachen$$b1$$kRWTH
001046697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184377$$aForschungszentrum Jülich$$b2$$kFZJ
001046697 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)184377$$aRWTH Aachen$$b2$$kRWTH
001046697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191252$$aForschungszentrum Jülich$$b3$$kFZJ
001046697 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)191252$$aRWTH Aachen$$b3$$kRWTH
001046697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180432$$aForschungszentrum Jülich$$b4$$kFZJ
001046697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b5$$kFZJ
001046697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191359$$aForschungszentrum Jülich$$b6$$kFZJ
001046697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161579$$aForschungszentrum Jülich$$b7$$kFZJ
001046697 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ
001046697 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH
001046697 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1232$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001046697 9141_ $$y2025
001046697 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001046697 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001046697 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001046697 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001046697 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-02
001046697 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001046697 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001046697 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001046697 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2022$$d2025-01-02
001046697 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
001046697 920__ $$lyes
001046697 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001046697 980__ $$ajournal
001046697 980__ $$aEDITORS
001046697 980__ $$aVDBINPRINT
001046697 980__ $$aI:(DE-Juel1)IET-1-20110218
001046697 980__ $$aUNRESTRICTED