001046703 001__ 1046703
001046703 005__ 20260122125309.0
001046703 0247_ $$2doi$$a10.1137/24M1694483
001046703 0247_ $$2ISSN$$a0368-4245
001046703 0247_ $$2ISSN$$a0036-1399
001046703 0247_ $$2ISSN$$a1095-712X
001046703 0247_ $$2ISSN$$a2168-3484
001046703 0247_ $$2WOS$$aWOS:001607381900013
001046703 037__ $$aFZJ-2025-03922
001046703 041__ $$aEnglish
001046703 082__ $$a510
001046703 1001_ $$0P:(DE-HGF)0$$aHarris, Isaac$$b0$$eCorresponding author
001046703 245__ $$aSampling methods for recovering buried corroded boundaries from partial electrostatic Cauchy data
001046703 260__ $$aPhiladelphia, Pa.$$bSoc.$$c2025
001046703 3367_ $$2DRIVER$$aarticle
001046703 3367_ $$2DataCite$$aOutput Types/Journal article
001046703 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764420431_1775
001046703 3367_ $$2BibTeX$$aARTICLE
001046703 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046703 3367_ $$00$$2EndNote$$aJournal Article
001046703 520__ $$aWe consider the inverse shape and parameter problem for detecting corrosion from partial boundary measurements. This problem models the nondestructive testing for a partially buried object from electrostatic measurements on the accessible part of the boundary. The main novelty is the extension of the linear sampling and factorization methods to an electrostatic problem with partial measurements. These methods so far have only mainly applied to recovering interior defects, which is a simpler problem. Another important aspect of this paper is in our numerics, where we derive a system of boundary integral equations to recover the mixed Green’s function needed for our inversion. With this, we are able to analytically and numerically solve the inverse shape problem. For the inverse parameter problem, we prove uniqueness and Lipschitz-stability (in a finite dimensional function space) assuming that one has the associated Neumann-to-Dirichlet operator on the accessible part of the boundary.
001046703 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001046703 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046703 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b1$$ufzj
001046703 7001_ $$0P:(DE-HGF)0$$aLee, Heejin$$b2
001046703 773__ $$0PERI:(DE-600)1468266-7$$a10.1137/24M1694483$$gVol. 85, no. 5, p. 2215 - 2241$$n5$$p2215 - 2241$$tSIAM journal on applied mathematics$$v85$$x0036-1399$$y2025
001046703 8564_ $$uhttps://juser.fz-juelich.de/record/1046703/files/Sampling_Methods_for_Recovering_Buried_Corroded_Bo.pdf$$yRestricted
001046703 909CO $$ooai:juser.fz-juelich.de:1046703$$pVDB
001046703 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Purdue University$$b0
001046703 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b1$$kFZJ
001046703 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Duke Kunshan University$$b2
001046703 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001046703 9141_ $$y2025
001046703 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2025-01-06$$wger
001046703 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSIAM J APPL MATH : 2022$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-06
001046703 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-06
001046703 920__ $$lno
001046703 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001046703 980__ $$ajournal
001046703 980__ $$aVDB
001046703 980__ $$aI:(DE-Juel1)JSC-20090406
001046703 980__ $$aUNRESTRICTED