| Home > Publications database > Sampling methods for recovering buried corroded boundaries from partial electrostatic Cauchy data > print |
| 001 | 1046703 | ||
| 005 | 20260122125309.0 | ||
| 024 | 7 | _ | |a 10.1137/24M1694483 |2 doi |
| 024 | 7 | _ | |a 0368-4245 |2 ISSN |
| 024 | 7 | _ | |a 0036-1399 |2 ISSN |
| 024 | 7 | _ | |a 1095-712X |2 ISSN |
| 024 | 7 | _ | |a 2168-3484 |2 ISSN |
| 024 | 7 | _ | |a WOS:001607381900013 |2 WOS |
| 037 | _ | _ | |a FZJ-2025-03922 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 510 |
| 100 | 1 | _ | |a Harris, Isaac |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Sampling methods for recovering buried corroded boundaries from partial electrostatic Cauchy data |
| 260 | _ | _ | |a Philadelphia, Pa. |c 2025 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1764420431_1775 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We consider the inverse shape and parameter problem for detecting corrosion from partial boundary measurements. This problem models the nondestructive testing for a partially buried object from electrostatic measurements on the accessible part of the boundary. The main novelty is the extension of the linear sampling and factorization methods to an electrostatic problem with partial measurements. These methods so far have only mainly applied to recovering interior defects, which is a simpler problem. Another important aspect of this paper is in our numerics, where we derive a system of boundary integral equations to recover the mixed Green’s function needed for our inversion. With this, we are able to analytically and numerically solve the inverse shape problem. For the inverse parameter problem, we prove uniqueness and Lipschitz-stability (in a finite dimensional function space) assuming that one has the associated Neumann-to-Dirichlet operator on the accessible part of the boundary. |
| 536 | _ | _ | |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511) |0 G:(DE-HGF)POF4-5112 |c POF4-511 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Kleefeld, Andreas |0 P:(DE-Juel1)169421 |b 1 |u fzj |
| 700 | 1 | _ | |a Lee, Heejin |0 P:(DE-HGF)0 |b 2 |
| 773 | _ | _ | |a 10.1137/24M1694483 |g Vol. 85, no. 5, p. 2215 - 2241 |0 PERI:(DE-600)1468266-7 |n 5 |p 2215 - 2241 |t SIAM journal on applied mathematics |v 85 |y 2025 |x 0036-1399 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1046703/files/Sampling_Methods_for_Recovering_Buried_Corroded_Bo.pdf |y Restricted |
| 909 | C | O | |o oai:juser.fz-juelich.de:1046703 |p VDB |
| 910 | 1 | _ | |a Purdue University |0 I:(DE-HGF)0 |b 0 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)169421 |
| 910 | 1 | _ | |a Duke Kunshan University |0 I:(DE-HGF)0 |b 2 |6 P:(DE-HGF)0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action |1 G:(DE-HGF)POF4-510 |0 G:(DE-HGF)POF4-511 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Enabling Computational- & Data-Intensive Science and Engineering |9 G:(DE-HGF)POF4-5112 |x 0 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2025-01-06 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SIAM J APPL MATH : 2022 |d 2025-01-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-06 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-06 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-06 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-06 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-06 |
| 920 | _ | _ | |l no |
| 920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|