001     1046705
005     20251129202117.0
024 7 _ |a 10.1103/2lkd-l6gt
|2 doi
024 7 _ |a 2475-9953
|2 ISSN
024 7 _ |a 2476-0455
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03924
|2 datacite_doi
037 _ _ |a FZJ-2025-03924
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Immel, David
|0 P:(DE-Juel1)180172
|b 0
|e First author
245 _ _ |a Nanoindentation simulations for copper and tungsten with adaptive-precision potentials
260 _ _ |a College Park, MD
|c 2025
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1764418937_20592
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We perform nanoindentation simulations for both the prototypical face-centered cubic metal copper and the body-centered cubic metal tungsten with an adaptive-precision description of interaction potentials including different accuracy and computational costs. We combine both a computationally efficient embedded atom method (EAM) potential and a precise but computationally less efficient machine learning potential based on the atomic cluster expansion (ACE) into an adaptive precision (AP) potential tailored for the nanoindentation. The numerically more expensive ACE potential is employed selectively only in regions of the computational cell where high precision is required. The comparison with pure EAM and pure ACE simulations shows that for Cu, all potentials yield similar dislocation morphologies under the indenter with only small quantitative differences. In contrast, markedly different plasticity mechanisms are observed for W in simulations performed with the central-force EAM potential compared to results obtained using the ACE potential. ACE is able to describe accurately the angular character of bonding, which is in W due to its half-filled 𝑑band. All ACE-specific mechanisms are reproduced in the AP nanoindentation simulations, however, with a significant speedup of 20–30 times compared to the pure ACE simulations. Hence, the AP potential overcomes the performance gap between the precise ACE and the fast EAM potential by combining the advantages of both potentials.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Mrovec, Matous
|0 0000-0001-8216-2254
|b 1
700 1 _ |a Drautz, Ralf
|0 0000-0001-7101-8804
|b 2
700 1 _ |a Sutmann, Godehard
|0 P:(DE-Juel1)132274
|b 3
|e Corresponding author
773 _ _ |a 10.1103/2lkd-l6gt
|g Vol. 9, no. 9, p. 093805
|0 PERI:(DE-600)2898355-5
|n 9
|p 093805
|t Physical review materials
|v 9
|y 2025
|x 2475-9953
856 4 _ |u https://juser.fz-juelich.de/record/1046705/files/2lkd-l6gt.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046705
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180172
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132274
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV MATER : 2022
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21