001     1046708
005     20251113202119.0
024 7 _ |a 10.1021/acs.nanolett.5c03355
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
037 _ _ |a FZJ-2025-03926
082 _ _ |a 660
100 1 _ |a Knispel, Timo
|b 0
245 _ _ |a Hydrogen Toggling between Yoshimori Spin Spirals and Elliptical Dzyaloshinskii–Moriya Skyrmions in Fe on Ir(110)
260 _ _ |a Washington, DC
|c 2025
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1763045813_13322
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Skyrmions are particle-like spin textures that arise from spin spiral states in the presence of an external magnetic field. These spirals can originate from either frustrated Heisenberg exchange interactions or the interplay between exchange interactions and the relativistic Dzyaloshinskii-Moriya interaction, leading to atomic- and mesoscale textures, respectively. However, the conversion of exchange-stabilized spin spirals into skyrmions typically requires magnetic fields that exceed practical laboratory limits. Here, we demonstrate a strategy leveraging hydrogen adsorption to expand the range of magnetic films capable of hosting stable or metastable skyrmions. In a structurally open and anisotropic system of two pseudomorphic Fe layers on Ir(110), spin-polarized scanning tunneling microscopy combined with ab initio calculations reveals that a right-handed, exchange- stabilized N´eel-type spin spiral propagating along the [110] direction with a 1.3 nm period transitions upon hydrogen adsorption to a Dzyaloshinskii-Moriya type spiral with a sevenfold longer period of 8.5 nm. This transition enables elliptical skyrmions to form at moderate magnetic fields.Hydrogenation thus provides a non-volatile mechanism to toggle between distinct magnetic states, offering a versatile platform for controlling spin textures.
536 _ _ |a 5211 - Topological Matter (POF4-521)
|0 G:(DE-HGF)POF4-5211
|c POF4-521
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)462692705 - Antiskyrmionen auf Oberflächen durch anisotrope Dzyaloshinskii-Moriya-Wechselwirkungen (462692705)
|0 G:(GEPRIS)462692705
|c 462692705
|x 1
536 _ _ |a 3D MAGiC - Three-dimensional magnetization textures: Discovery and control on the nanoscale (856538)
|0 G:(EU-Grant)856538
|c 856538
|f ERC-2019-SyG
|x 2
536 _ _ |a SFB 1238 B06 - Rastertunnelspektroskopie (B06) (319897474)
|0 G:(GEPRIS)319897474
|c 319897474
|x 3
536 _ _ |a SFB 1238 A01 - Konstruktion von 2D-Heterostrukturen für die Kontrolle elektronischer, optischer und magnetischer Eigenschaften (A01) (319464028)
|0 G:(GEPRIS)319464028
|c 319464028
|x 4
536 _ _ |a SFB 1238 C01 - Strukturinversionsasymmetrische Materie und Spin-Orbit-Phänomene mittels ab initio (C01) (319898210)
|0 G:(GEPRIS)319898210
|c 319898210
|x 5
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Tseplyaev, Vasily
|b 1
700 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 2
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 3
700 1 _ |a Michely, Thomas
|0 0000-0003-1657-1847
|b 4
700 1 _ |a Fischer, Jeison
|0 0000-0003-3538-1926
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acs.nanolett.5c03355
|g p. acs.nanolett.5c03355
|0 PERI:(DE-600)2048866-X
|n 40
|p 14565
|t Nano letters
|v 25
|y 2025
|x 1530-6984
856 4 _ |u https://juser.fz-juelich.de/record/1046708/files/hydrogen-toggling-between-yoshimori-spin-spirals-and-elliptical-dzyaloshinskii-moriya-skyrmions-in-fe-on-ir%28110%29.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1046708
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130548
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5211
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2022
|d 2024-12-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21