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In-memory computing is a promising alternative to traditional computer designs, as it helps overcome
performance limits caused by the separation ofmemory and processing units. However, many current
approaches struggle with unreliable device behavior, which affects data accuracy and efficiency. In
this work, the authors present a new computing method that combines two types of operations—
those based on electrical resistance and those based on voltage—within each memory cell. This
design improves reliability and avoids the need for expensive current measurements. A new software
tool also helps automate the design process, supporting highly parallel operations in dense two-
dimensional memory arrays. The approach balances speed and space, making it practical for
advanced computing tasks. Demonstrations include a digital adder and a key part of encryption
module, showing both strong performance and accuracy. This work offers a new direction for reliable
and efficient in-memory computing systems with real-world applications.

The increasing demands of data-intensive computing underscore the
necessity for high-performance computing paradigms endowed with robust
data processing capabilities. Today’s von-Neumann computing archi-
tectures, based on mature complementary metal-oxide-semiconductor
(CMOS) technology and transistors with latching characteristics for
logic gates, face challenges in transistor scaling and the persistent memory
wall issue. Despite advances in automation tools for logic circuitry design,
these limitations necessitate a paradigm shift1,2. In-memory computing
enabled by nanoscale memory technology3,4 circumvents the memory-
processor bottleneck by executing logic processing within the memory itself.
Among enabling nanotechnologies5, memristive crossbars stand out as
particularly promising candidates due to their analog computing
capability6,7, low power cost and high scalability8,9. The key feature of a
memristive element is its resistance change over time based on the current
that flows though it (and some other microscopic degrees of freedom),
integrating memory effect and latching characteristics in one, distinguishing
it fundamentally from its transistor counterparts. In memory applications,
data is stored as resistance (memristance) values in each cell, with Low
Resistance State (LRS) representing ‘1’ and High Resistance State (HRS)
representing ‘0’.

For logic processing applications, known memristor-enabled com-
puting paradigms are based on either stateful or nonstateful logic approa-
ches. Stateful logic designs10–13 capitalize on memristance states stored in
individual cells as logic inputs and outputs, offering cost-effectiveness.
However, their practical implementation in memristor crossbars faces
substantial obstacles due to inherent reliability issues14,15. For instance,
notable stateful logic designs10,11 typically assess simultaneously multiple
cells in a crossbar configuration for computing each logic gate.Thesedesigns
confront challenges such aswriting variations that reduce the programming
window between logic ‘0’ and ‘1’16, as well as unintended programming of
neighboring cells by programming voltages applied to target cell(s)17,18.
Alternatively, the nonstateful approaches19–21 leverage transient voltages or
currents applied to (or sensed from)memristors as logic variables ‘0’ and ‘1’.
Thoughmore resilient to variations, nonstateful designs lack universality (as
clarified in Supplementary Information A). They require sense amplifiers
controlled by dedicated peripherals to handle cascaded logic functions,
leading to high power and latency cost in peripherals and compromising the
in-memory computing benefits. Despite considerable efforts to advance
memristive logic designs12,13, the inherent trade-off between computing
efficiency and accuracy persists in both approaches.
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To tackle this issue, we propose an innovative approach: mixed-mode
in-memory computing paradigm that maximize the use of memory effect
and latching characteristics in each memristive element. Our approach
offers effective solutions at the circuit, architecture, and software levels to
address the reliability issues pertaining to memristive crossbars, while
eliminating high cost current sensing during cascading.

In particular, we see that mapping computations to memristive
crossbars differs substantially from classical logic synthesis in CMOS
transistors. Simply adapting known tools22, algorithms23,24, or data
structures25–27 to memristive crossbars, as done in current solutions, is
insufficient to fully exploit the high parallel computing capability of 2D
crossbars. Therefore, we develop a dedicated crossbar-oriented auto-
mation tool for seamlessly integrating the voltage- and memristance-
controlled logic operations. As a proof-of-principle, we have experi-
mentally demonstrated the computation of an N-bit carry ripple adder
and cryptographic S-Boxes. While striving for an optimal balance
between processing latency and area, these demonstrations provide
compelling evidence of its capability to solve arbitrary n-input functions
with enhanced reliability in data processing.

Results and discussion
Mixed-mode in-memory computing framework
The key of innovative mixed-mode in-memory computing paradigm is
to utilize each memristive cell for either M-mode, where information is

represented as resistance or memristance stored in the cell, or V-mode,
where voltage applied to or current sensed from the same cell is used for
this purpose, as illustrated in Fig. 1a. This allows firstly arbitrary com-
binations of stateful and nonstateful operations on user-defined subsets
of the crossbar, maximizing their benefits while keeping their expected
drawbacks in check. We propose here effective solutions at circuit-,
architecture-, and software-level (Fig. 1b), for solving arbitrary complex
logic functions with high performance while mitigating the intrinsic
reliability issues in nanoscale memory devices.

At circuit- and architecture-level, we determine distinct four logic
kernels serving as building blocks of mixed-mode computation:
memristance-input (MI), memristance-output (MO), voltage-input (VI),
and voltage-output (VO). MI or VI kernels employ memristance M or,
respectively, voltage V as the logic input variable, while in MO or VO
kernels, respectively, M or V serves as the logic output variable. Supple-
mentary Information A highlights that all existing representative memris-
tive logic designs in the literature can be systematically classified according
to newly determined logic kernels. Remarkably, existing memristive logic
designs in the same logic kernels show analogous benefits and constraints,
affirming the validity of employing these distinct logic kernels for systematic
categorization of memristive logic designs.

MI and VI kernels are representing the latching feature inherent in
memristors, while MO and VO representing memory effect, enabling logic
operations without changing their resistance states. Under themixed-mode

Fig. 1 | Mixed-mode in-memory computing and system-level co-design using
memristive crossbars. a Illustration of computing structures for in-memory com-
puting with an inset on the right demonstrating working principle of mixed-mode
computing, i.e. flexible integration of V- and M-mode logic operations in each
memristive cell, including MI (memristance-input), MO (memristance-output), VI
(voltage-input), and VO (voltage-output). b Co-design realized in system hierarchy
using memristive crossbars for logic processing. c Example of mixed-mode

computing using V and M modes in cycle 1 and 2, respectively. The computing is
performed on memristive cells M11, M21 and M31 in one bit line in a memristive
crossbar. In cycle 1 (V-mode), the voltage values vx1/vx2/vx3 are applied to execute
logic encoding based on the combinations of logic input variables x1/x2/x3. InCycle 2
(M-mode), fixed voltages V1/V2/V3 are applied, and outputs are stored as resistance
states my1 and my2 in corresponding memristive cells.
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principle, a computation ismapped toa series of logic operations inMI,MO,
VI, and VO kernels, which can be flexibly interchanged and can use com-
binations of M- and V-modes at their inputs and outputs. Moreover, each
cell in the array can be utilized for implementing single or multiple logic
operations in each kernel, with MO facilitating low-cost cascading and
storing the outputmemristance in the circuitry. For instance, in Fig. 1c, cells
M11–M31 in a BL in crossbar undergo one cycle of logic operations in VI,
followed by logic operations in MI during the subsequent cycle.

At software- and system-level, in order to maximize the considerable
computing efficiency achievable through parallel operations acrossmultiple
memristive cells in a two-dimensional grid, we developed an approach
called M3S (mixed-mode mapping and synthesis) that automatically syn-
thesizes M-and V-mode operations to the cells for solving arbitrary logic
function and determines the corresponding control signals on wordlines
(WLs) and bitlines (BLs).While its algorithmic principle is generic, the tool
used for demonstrations in this work balances between benefits and costs of
theVOkernel (Supplementary InformationB) by permitting only the initial
values as logic input variables and restricting readout operations to the
beginning of computation. Despite minimizing the power and latency costs
in peripherals, it also mitigates the necessity for data copying or transmis-
sion within the crossbar, and further allows logic processing at arbitrary
positions while ensuring necessary logic inputs for the VI kernel at any
computing cycle.

Highly efficient 3-input logic operations
For facilitating the mixed-mode logic cascading introduced in last section,
we propose 3-input logic operations in each kernel, i.e. MI3, VI3, and VO3

operations, with MO as low cost logic cascading among them, as shown in
Fig. 2a. All 3-input logic designs execute distinct logic functions within one
single cycle. We determine M1 as input and output cell. the memristance
statemx1 of M1 prior to the logic operation and the memristance statemy1

subsequent to it serves as one of the logic inputs and the logic output,
respectively.

The MI3 operation from MI kernel exploits three parallel-connected
memristive cells in one word line (WL) or bit line (BL) with memristance
logic inputsmx1−x3 that are stored in each device as a logic input variable. In
contrast, the 3-input VI3 operation from VI operates exploiting determi-
nisticwriting operations on a single cell, utilizing the initial statemx1 and the
voltages applied to its device terminals vx2/vx3 as logic input variables. MI3

and VI3 operations implement the functions

ðmy1Þ ¼ MI3ðmx1;mx2;mx3Þ; ð1Þ

ðmy1Þ ¼ VI3ðmx1; vx2; vx3Þ: ð2Þ
Figure 2b, c illustrates the corresponding truth tables, respectively. The

logic functions are implemented on Au/BiFeO3/Pt/Ti memristors (Fig. 2d).
The outputmy1 can subsequently function as logic input for both cascaded
VI3 and MI3, thereby greatly facilitating logic cascading during automation
design. Intuitively, the 3-inputMI3 and VI3 operations can be considered as
extended 2-input memristor-aided logic (MAGIC)11 and complementary
resistive switching (CRS, without readout) logic designs20, which encounter
inevitable high error rates and universality issues, respectively, as detailed in
Supplementary Information A.

The mixed-mode computing framework offers solutions enabling the
practical logic processing by exploitingMI3 and VI3 operations. Traditional
MI kernels alone suffer from longer cycles and higher error rates due to the
stochastic variability of memristive technologies14, while VI kernels alone
are not universal and require readout VO to realize arbitrary functions
(Supplementary Information A). These limitations are overcome with the
proposed mixed-mode approach, which integrates VI3 withMI3 operations
to achieve universality without the need for VO, resulting in shorter pro-
cessing cycles and enhanced resilienceby offloading part of the functionality
to the more reliable VI3 operations. Additionally, the mixed-mode com-
puting principle addresses common issues in stateful logic designs such as

“input drift” and “partial switching” (Supplementary Information C),
enabling practically cascadableMI3 operations. By setting the programming
bias to Vin = 5.3 V, we ensure correct transitions from LRS to HRS in M1

with input combinations ‘101’, ‘110’, and ‘111’, while preventing changes in
memristance values in the input cellsM2−3. As expected, thisVin results in a
compromised LRS in M1 for the ‘100’ input combination (27.2 MΩ com-
pared to the initialized1.1MΩ).Asnext, theM3Sautomation toolprioritizes
using the output cellM1 as an input cell in cascadedMI3 (orVI3) operations,
allowing the compromised LRS in M1 to be re-switched back to logic ‘1’
through a positive Vin applied to the top electrode of M1 while correctly
computing the cascaded MI3 output. These methods enable robust and
deeply cascadable MI3 operations in practical implementations.

Figure 2e, f demonstrates the experimental results on MI3 and VI3

operations recorded from the fabricated BiFeO3-based self-rectifying
crossbar array (extended experimental results in Supplementary Informa-
tion C). The Experimental Section depicts the fabrication and character-
ization details of the self-rectifying crossbar array based on BiFeO3

memristors, with Au top electrodes (bottom electrodes) interconnecting as
BLs (WLs). It is important to emphasize that the proposed mixed-mode
approach is compatible with various nanotechnologies, including passive
crossbar arrays and 1-transistor-1-resistor (1T1R) arrays (Supplementary
Information D). Supplementary Information B presents the designed
3-input VO3 operation using different types of BiFeO3 memristors in a
comparative manner, effectively illustrating the technology dependency in
the VO kernel. WithMI operations at our disposal, VO is not necessary for
universality.

M3S: mixed-mode mapping and synthesis tool
Mixed-mode in-memory computing, with its V-mode and M-mode
operations running simultaneously on a memristive crossbar, is so dis-
tinct from a conventional gate-based CMOS circuit that a mere adaptation
of an existing synthesis tool is insufficient. The key to achieve an optimal
solution with minimized requirements for cell and cycle numbers in in-
memory computing, is to align the physical data location (mapping) fol-
lowing eachgate operation in every computing cycle (synthesis) for enabling
highly parallel computing in a two-dimensional memristive crossbar given
its sequential computing nature. We developed the M3S tool, which con-
currently addresses both mapping and synthesis tasks by formulating them
as a Boolean satisfiability formula in conjunctive normal form, such that the
solution (satisfying assignment) of this formula gives, for each crossbar
location and each cycle, the V-mode or M-mode operations executed.

While M3S tool is capable of generating conjunctive normal forms
that flexibly combine arbitrary V-mode and M-mode operations, the
proof-of-principle demonstrations in this study utilize V-mode phase fol-
lowed by M-mode phase, satisfying the computational requirements for
the desired logic functions. Taking VI3 operation in V-mode as an exam-
ple (Fig. 2c), we assume that the peripherals can apply input voltages
vx2−x3 according to functions from the list of literals
fl1 ¼ const� 0; l2 ¼ const� 1 ; l3 ¼ x1; l4 ¼ x1; l3 ¼ x2; l4 ¼ x2; . . .g.
Therefore, the Boolean satisfiability formula determines for each crossbar
locationMab (a,b) and each cycle c the variables gTEa;b;j;c and g

BE
a;b;k;c for voltage

inputs vx2 = lj to top electrode and vx3 = lk to bottom electrode while
executing each VI3. For instance, the VI3 operation on the crossbar cell M78

in cycle 2 can be transformed into conjunctive normal form as shown in Eq.
(3):

^

1≤ j; k≤ 2nþ 2

1≤ q≤ 2n

ð gTE7;8;j;2 ^ gBE7;8;k;2Þ ! v7;8;2;q � VI3ðv7;8;1;q; lj;q; lk;qÞ
� �� �

:

ð3Þ

Here, the expression gTE7;8;j;2 ^ gBE7;8;k;2 on the left side of the implication
(→ ”) defines the mapping constraints, including cell location (a, b), cycle
number c, and input bias-related literals j/k. If the solution to the Boolean
satisfiability formula results in gTE7;8;1;2 ¼ 1 and gBE7;8;6;2 ¼ 1, it indicates that
during cycle 2, the top electrode and bottom electrode ofM78 are driven by
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l1 = const-0 and l6 ¼ x2. Conversely, the right side of the implication (→ ”)
with v7,8,2,q ≡ VI3(v7,8,1,q, lj,q, lk,q) specifies the conditions for the VI3

operation in cycle 2. This encompasses the synthesis conditions, such as the
definitions of the logic functions VI3 or MI3 and the operated q-th entry.

Hence, based on thememristance input variable v7,8,1,q inM78 during cycle
1, the output variable v7,8,2,q in cycle 2 is set to 1 if the q-th entry of the VI3

truth table is 1, and 0 otherwise. Detailed descriptions of the M3S design in
V- andM-mode canbe found in Supplementary InformationF.Theparallel

Fig. 2 | Experimental demonstration of 3-input MI3 and VI3 operations by
exploiting BiFeO3 memristive cells. a Demonstration of mixed-mode computing
principle, transferring logic inputs xi into yi through seamless integration betweenVI
and MI kernels (VO kernel is strictly excluded during cascading due to high cost as
depicted in Supplementary Information B). Inset below illustrates the cell states in
self-rectifying passive memristive crossbar structures before and after processing
mixed-mode computing. Illustration of truth tables and circuit designs for bMI3 and
c VI3 logic operations. GND indicates the grounded electrode. d Schematics and
current-voltage (I-V) characteristics of BiFeO3 memristive devices applied in this
work with insets showing the SEM of fabricated passive crossbar and the definition
of logic variables. The accompanying table summarizes the applied bias voltages vi

for logic `1' and `0' in the VI computing kernel, and defines the corresponding
memristance states mi in the MI kernel, where logic `1' and `0' are represented by
low-resistance state (LRS) and high-resistance state (HRS), respectively. Experi-
mental demonstration of 3-input eMI3 (Vin = 5.3V) and fVI

3 (input logic `1' as vW=
6 V) for each input combination in the truth table. The memristance logic inputs
mx2/mx3 (marked in blue) inMI3 and the voltage logic inputs vx2/vx3 (marked in red)
in VI3 are demonstrated on left y axis, while the memristance inputmx1 and output
my1 states (marked in gray) are shown on the right y-axis. State verification of these
results is conducted through memory validation MO by applying a readout step at
the end with a bias of 2 V to the top electrode.
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computing strategy, which cascades across multiple cells in the 2D crossbar
array, is ensured by transforming all VI3 and MI3 operations into con-
junctive normal forms for each cycle. Additional constraints ensure that all
cells sharing the sameWL(bottomelectrode) andBL (top electrode) asMab
adhere to the same input-related literals lj. M3S computes all coordinates
simultaneously, achieving an optimal solutionwithminimized crossbar size
and cycle count while adhering to the robust logic cascading conditions
outlined previously.

Unlike the previouswork28, which relies on classical synthesis tools like
ABC and CPLEX, we build directly from Boolean functions, and employ at
least two modes (MI and VI) rather than the single MAGIC logic (MI
mode). Additionally, our approach integrates synthesis and mapping from
the outset, simultaneously generating a gate netlist while considering the
physical locations of memory cells and the parallelism inherent in crossbar
architectures. This co-design methodology ensures that synthesis directly
exploits the crossbar’s computing potential, leading to superior efficiency
and performance and offering optimality guarantees.

Experimental proof-of-principle demonstrations
We demonstrate the advantages of using the mixed-mode computing
paradigm on two examples: N-bit carry-ripple adders and a small-scale
(4-bit) version of the S-Box from the Advanced Encryption Algorithm
(AES)29. An N-bit carry-ripple adder is an example of modular design that
consists of identical cells (full adders); there are numerous prior imple-
mentations of adders that can serve for comparison. An S-Box, which
provides the necessary nonlinearity during encryption, is an algebraically
complex construction that is too large to be optimized in a handcrafted
manner.Note that security aspects of the S-Box (e.g., its vulnerability to side-
channel attacks) are not in scope of this work.

Utilizing the automation tool M3S, a control sequence has been
generated for implementing the full adder N-bit carry-ripple adder as
depicted in Fig. 3a, utilizing BiFeO3-based crossbar architectures. The
control sequence illustrated in Fig. 3b maps arbitrary combinations of
logic inputs ci, ai, and bi (represented as x1�3i

, respectively) onto the
desired logic outputs ci+1 and si (represented as y1�2i

) through VI3 and
MI3 operations. According to carry-ripple adder’s three input x1�3i

, one
of the eight values (literals) x1i , x1i , x2i , x2i , x3i , x3i , const-0 and const-1
can be applied to either of the memristive cell’s two electrodes, with the
first connected to the top electrode and the second to the bottom elec-
trode of each cell, which correspond to BLs and WLs in a crossbar array
(Fig. 3b). Starting with the unknown state x, each VI3 operation computes
myi

and stores it directly as a memristive state, which can serve as input
to subsequent VI3 and MI3 operations. The control sequence depicted in
Fig. 3b contains 4 rows, each representing a cell required for computing a
1-bit carry-ripple adder, with 1 additional cell dedicated to storing the
output-carry bit ci+1). Furthermore, the 5 numbered columns signify the
requisite five cycles for executing the 1-bit carry-ripple adder: 3 cycles
involve VI3 operations concurrently across all cells (highlighted in red),
while 2 subsequent cycles involve MI3 operations (highlighted in blue).
Extending such design to an N-bit adder reveals that only the variation-
resilient VI3 operation for computing the output carry bit ci+1 in cycle 2
necessitates operations for each bit in ai and bi, resulting in a total of
N + 4 cycles and 4N + 1 cells. As aforementioned, experimental pro-
cessing typically incurs high error rates with the MI kernel, while the VI
kernel remains relatively error-free. It is notable that regardless of N’s
size, an N-bit adder utilizing this design contains only 2 cycles of parallel
MI3 operations, implying consistent error rates across varying N. Due to
space constraints, herewith we demonstrate the experimental results of a
4-bit carry-ripple adder.

Supplementary Table S4 in the Supplementary Information I shows
that all representativeN-bit adder designs12,23,30–42 are based on either MI or
VI kernels. Our mixed-mode approach, being the first to exploit both ker-
nels without current sensing during cascading, showcases an optimal bal-
ance between cell and cycle numbers. The only design with a better Area-
Delay-Product lacks crossbar compatibility or necessitates substantial

structuralmodifications forpractical implementation.Wehighlight that our
adder has been experimentally demonstrated in full, while many previous
papers have characterize individual gates experimentally and then plug the
results of suchmeasurements into a simulation.Moreover, while our design
eliminates current sensing during cascading, a separate set of results for
adders incorporating the VO3 operation is found in Supplementary Infor-
mationG, alongwith comparable adders fromliterature43–48. Supplementary
Information H summarizes the energy costs of adders with and without
readout.

The block diagram of the 4-bit S-Box and its truth table are shown in
Fig. 4a.Note that its input x1-x4 andoutput y1-y4 are encodedusing 4 bits. Its
control sequence found by M3S and shown in Fig. 4b, has the minimum
possible number of 4 MI3 operations, equal to 4 outputs and 12 cells (the 4
MI cycles are shown in parallel in Fig. 4b to save space). Figure 4c
demonstrates the VI3 and MI3 operations of 4-bit S-Box with arbitrary
inputs, where the bitwise parallel operations are performed with shared
bottom electrodes in one BL in cycles 1–5 in individual cells, and the MI3

operations are executed sequentially in cells M1-M3, M4-M6, M7-M9, and
M10-M12, respectively. Compared with 4-bit S-Box exploiting 12 mem-
ristive cells by using mixed-mode principle, the prior CMOS implementa-
tion in ref. 49 obtained by Altera synthesis software had roughly 106
transistors (8 two-input gates, 8 three-input gates, 2 four-input gates, 1 five-
input gate), and the CMOS circuit using as the basis for the memristive
implementation in ref. 50 had 32 two-input gates or roughly 128 transistors.
The experimental results of 4-bit Sbox on a passive crossbar based on
BiFeO3memristive crossbarwith inputs 1010 and 1111 by using the control
sequence are presented in Fig. 4b.

This analysis does not consider the effort for peripherals that supply the
top electrode and bottom electrode values. In comparison to peripherals
required for other memristive implementations, the mixed-mode VI-MI
operation incurs the same effort for reading but might add complexity for
input-dependent writing biases. While we do not explicitly examine the
endurance or retention properties of the memristors in this work, we are
encouraging the synthesisprocedure touse the variation-resilientVIkernel as
much as possible, while resorting to theMI kernel only when this is required
for universality. This consideration supports the flexibility of our synthesis
approach: once M-mode operations will get more reliable in the future, the
designer can simply rerun M3S with more clock cycles allocated to them.

Conclusions
In this work, we propose amixed-mode in-memory computing paradigmby
seamlessly integratingV-mode andM-mode operationswithin each physical
memristive cell. This approach combines the strengths of diverse gate pro-
cessing (V-mode) and universality (M-mode) while mitigating the impact of
device variations inherent in nanodevices. According to our reviewof current
research, this approach represents thefirst practical implementation enabling
complex functions in memristive crossbars, while eliminating the need for
high-cost current sensing in peripherals during cascading.

Moreover, the first-of-its-kind memristor crossbar-oriented mapping
and synthesis (M3S) automation tool is developed, enabling flexible com-
binations of V-mode and M-mode operations for implementing arbitrary
logic functions by carrying out synthesis and mapping tasks in one. M3S
achieves an optimal balance between latency and area, reducing the typical
trade-offs of conventional in-memory computing and enhancing power
efficiency. Our experimental demonstrations include a best-in-class N-bit
carry ripple adder and the first implementation of complex S-Box circuitry
with 12memristive cells. This showcases not only a significant reduction in
device count—by an order of magnitude compared to conventional CMOS
technology—but also highlights the enhanced robustness and potential of
the mixed-mode computing paradigm.

The proposed mixed-mode computing is adaptable and transferable
across various nanoscale memory technologies that feature nonvolatile
and latching characteristics. In this work, while utilizing passive 1R
crossbar array for its potential high density, the future work can extend to
the 1T1R crossbar array which allows additional inputs to transistors to
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serve as logic inputs, thus facilitating advanced logic operations in V and
M kernels within the mixed-mode computing framework. Furthermore,
the inherent analog computing capabilities of memristive devices
enabling the design of ternary and multi-nary logic operations within the
mixed-mode computing paradigm not only expands the computational
horizons into mixed-nary computing but also heralds a new era of
unparalleled efficiency in computing paradigms, promising unmatched
computational power and efficacy.

Methods
Passive memristive crossbar fabrication
To fabricate the passive memristive crossbar array based on BiFeO3

thin film series, i.e. BiFeO3, BiFeTiO3, and BiFeTiO3/BiFeO3 thin films,

the corresponding polycrystalline BiFeO3 film series are deposited by
pulsed laser deposition at 650 ∘C in oxygen ambient, respectively.
Upon the Pt/Ti-bottom electrode patterned by photolithography and
ion beam etching, for fabricating the BiFeTiO3 or BiFeO3 memristive
crossbar arrays, the Ti doped BiFeO3 thin film or undoped BiFeO3 thin
film are deposited on structured Pt (100 nm)/Sapphire and Pt
(100 nm)/Ti (50 nm)/Sapphire substrates, respectively. Both BiFeTiO3

and BiFeO3 thin films possess rhombohedrally distorted perovskite
structure (R3c space group) and a nominal thickness of 550 nm. In
BiFeO3 thin film, the ambient hitting during deposition provokes the
substitutional incorporation of Ti donors into the BiFeO3 lattice,
which constructs a rectifying/non-rectifying contact with flexible bar-
rier height near to top/bottom electrode region, whereas, in BiFeTiO3

Fig. 3 | Experimental implementation of N-bit carry-ripple adder by exploiting
automation toolM3S. aDemonstration of the truth table ofN-bit carry-ripple adder
and the exploited crossbar structure. b Control sequence ofN-bit carry-ripple adder
using BiFeO3memristive crossbar synthesized exploitingM3S. Each VI3 operation is
noted as v in the diagram. c Illustration of logic operations for 4-bit carry-ripple

adder with arbitrary inputs, which requires in total 8 cycles, i.e., 6 of VI3 and 2 ofMI3

operations. d Experimental results of 4-bit carry-ripple adder, including memri-
stance of each cellMi, voltage onWL to shared bottom electrodeVWL, voltage on BL
to top electrode VBL, and the absolute values of current across each cell ∣Ii∣ of 4-bit
carry-ripple adder with inputs a = 0011, b = 0101.
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thin film the Ti content of nominal 1 at% promotes the modulation of
the flexible barrier in the top electrode region. The subsequent
deposition of BiFeTiO3 (100 nm) and BiFeO3 films (500 nm) on
structured Pt/Sapphire substrate sets up the BiFeTiO3/BiFeO3 bilayer
structure in BiFeTiO3/BiFeO3 memristive crossbar array with the
flexible Schottky-like barriers formed at the top and bottom interfaces
for the bilayer structure. The Au top electrode with thickness of
180 nm was evaporated and patterned by photolithography followed
by a lift-off. As an example, the SEM image of 32 × 32 BiFeO3 based
crossbar array (with a junction area of each cell as 20 × 20 μm2 and a
pitch of 25 μm) is demonstrated in Fig. 2a.

Electrical characterization
All the experimental electrical measurement illustrated in this work were
recorded using a probe station and a Keithley source meter 2400, which is
controlled by a home-made PCB board for selecting and applying biases to
WLs and BLs through LabVIEW program.

Data availability
The data that support the plots within this paper and other findings of this
study are available from the corresponding author upon reasonable request.
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