001046720 001__ 1046720
001046720 005__ 20251210202147.0
001046720 0247_ $$2doi$$a10.1021/acs.energyfuels.5c03523
001046720 0247_ $$2ISSN$$a0887-0624
001046720 0247_ $$2ISSN$$a1520-5029
001046720 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03932
001046720 037__ $$aFZJ-2025-03932
001046720 082__ $$a660
001046720 1001_ $$0P:(DE-Juel1)190629$$aCibaka, Thérèse$$b0
001046720 245__ $$aPersistent CO 2 Reduction Performance of an Ag Nanoparticle Gas Diffusion Electrode in Realistic Dynamic PV-Driven Operation
001046720 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2025
001046720 3367_ $$2DRIVER$$aarticle
001046720 3367_ $$2DataCite$$aOutput Types/Journal article
001046720 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1765353871_27809
001046720 3367_ $$2BibTeX$$aARTICLE
001046720 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046720 3367_ $$00$$2EndNote$$aJournal Article
001046720 520__ $$aProgress in the development of CO2 reductioncatalysts has revealed more stable and selective options for solarfuel production. In most cases, the catalysts are tested under steady-state conditions. However, to become a reliable long-term storagesolution for renewable energy, particularly photovoltaics (PV), CO2electroreduction must tolerate power intermittency. Directcoupling of CO2 electrolyzers to PV devices enables carbonutilization and efficient energy storage but requires catalysts thatmaintain consistent performance under dynamic power input.Herein, we select an Ag nanoparticle gas diffusion cathode withstable CO production across a wide current density range. Thesystem, directly coupled to a hardware-emulated Si-PV moduleoperating under a realistic sunny day profile, achieves 96% energy coupling efficiency and reaches a cumulative solar-to-chemical(CO) efficiency of 8.8% in 1 day. This study demonstrates the potential of Ag-based cathodes for robust performance in variable PV-powered systems and introduces a novel test methodology that better reflects real-world PV-electrolyzer integration, therebyadvancing practical implementation of solar-driven CO2 reduction.
001046720 536__ $$0G:(DE-HGF)POF4-1213$$a1213 - Cell Design and Development (POF4-121)$$cPOF4-121$$fPOF IV$$x0
001046720 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046720 7001_ $$0P:(DE-Juel1)130268$$aMerdzhanova, Tsvetelina$$b1$$eCorresponding author
001046720 7001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b2
001046720 7001_ $$0P:(DE-Juel1)188562$$aShcherbachenko, Sergey$$b3
001046720 7001_ $$0P:(DE-Juel1)177718$$aLiu, Guangxin$$b4
001046720 7001_ $$0P:(DE-Juel1)186878$$aPham, Chuyen van$$b5
001046720 7001_ $$aRau, Uwe$$b6
001046720 7001_ $$00000-0002-3884-436X$$aStrasser, Peter$$b7
001046720 773__ $$0PERI:(DE-600)1483539-3$$a10.1021/acs.energyfuels.5c03523$$gp. acs.energyfuels.5c03523$$n48$$p22776-22783$$tEnergy & fuels$$v39$$x0887-0624$$y2025
001046720 8564_ $$uhttps://juser.fz-juelich.de/record/1046720/files/persistent-co2-reduction-performance-of-an-ag-nanoparticle-gas-diffusion-electrode-in-realistic-dynamic-pv-driven.pdf$$yOpenAccess
001046720 8767_ $$d2025-10-08$$eHybrid-OA$$jPublish and Read
001046720 909CO $$ooai:juser.fz-juelich.de:1046720$$popenaire$$popen_access$$pdriver$$pVDB$$popenCost$$pdnbdelivery
001046720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190629$$aForschungszentrum Jülich$$b0$$kFZJ
001046720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130268$$aForschungszentrum Jülich$$b1$$kFZJ
001046720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich$$b2$$kFZJ
001046720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188562$$aForschungszentrum Jülich$$b3$$kFZJ
001046720 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186878$$aForschungszentrum Jülich$$b5$$kFZJ
001046720 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1213$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
001046720 9141_ $$y2025
001046720 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001046720 915pc $$0PC:(DE-HGF)0122$$2APC$$aHelmholtz: American Chemical Society 01/01/2023
001046720 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001046720 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001046720 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-07
001046720 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046720 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bENERG FUEL : 2022$$d2025-01-07
001046720 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001046720 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001046720 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046720 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bENERG FUEL : 2022$$d2025-01-07
001046720 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001046720 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger
001046720 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001046720 920__ $$lyes
001046720 9201_ $$0I:(DE-Juel1)IMD-3-20101013$$kIMD-3$$lPhotovoltaik$$x0
001046720 980__ $$ajournal
001046720 980__ $$aVDB
001046720 980__ $$aUNRESTRICTED
001046720 980__ $$aI:(DE-Juel1)IMD-3-20101013
001046720 980__ $$aAPC
001046720 9801_ $$aAPC
001046720 9801_ $$aFullTexts