001     1046720
005     20251210202147.0
024 7 _ |a 10.1021/acs.energyfuels.5c03523
|2 doi
024 7 _ |a 0887-0624
|2 ISSN
024 7 _ |a 1520-5029
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03932
|2 datacite_doi
037 _ _ |a FZJ-2025-03932
082 _ _ |a 660
100 1 _ |a Cibaka, Thérèse
|0 P:(DE-Juel1)190629
|b 0
245 _ _ |a Persistent CO 2 Reduction Performance of an Ag Nanoparticle Gas Diffusion Electrode in Realistic Dynamic PV-Driven Operation
260 _ _ |a Columbus, Ohio
|c 2025
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1765353871_27809
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Progress in the development of CO2 reductioncatalysts has revealed more stable and selective options for solarfuel production. In most cases, the catalysts are tested under steady-state conditions. However, to become a reliable long-term storagesolution for renewable energy, particularly photovoltaics (PV), CO2electroreduction must tolerate power intermittency. Directcoupling of CO2 electrolyzers to PV devices enables carbonutilization and efficient energy storage but requires catalysts thatmaintain consistent performance under dynamic power input.Herein, we select an Ag nanoparticle gas diffusion cathode withstable CO production across a wide current density range. Thesystem, directly coupled to a hardware-emulated Si-PV moduleoperating under a realistic sunny day profile, achieves 96% energy coupling efficiency and reaches a cumulative solar-to-chemical(CO) efficiency of 8.8% in 1 day. This study demonstrates the potential of Ag-based cathodes for robust performance in variable PV-powered systems and introduces a novel test methodology that better reflects real-world PV-electrolyzer integration, therebyadvancing practical implementation of solar-driven CO2 reduction.
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Merdzhanova, Tsvetelina
|0 P:(DE-Juel1)130268
|b 1
|e Corresponding author
700 1 _ |a Astakhov, Oleksandr
|0 P:(DE-Juel1)130212
|b 2
700 1 _ |a Shcherbachenko, Sergey
|0 P:(DE-Juel1)188562
|b 3
700 1 _ |a Liu, Guangxin
|0 P:(DE-Juel1)177718
|b 4
700 1 _ |a Pham, Chuyen van
|0 P:(DE-Juel1)186878
|b 5
700 1 _ |a Rau, Uwe
|b 6
700 1 _ |a Strasser, Peter
|0 0000-0002-3884-436X
|b 7
773 _ _ |a 10.1021/acs.energyfuels.5c03523
|g p. acs.energyfuels.5c03523
|0 PERI:(DE-600)1483539-3
|n 48
|p 22776-22783
|t Energy & fuels
|v 39
|y 2025
|x 0887-0624
856 4 _ |u https://juser.fz-juelich.de/record/1046720/files/persistent-co2-reduction-performance-of-an-ag-nanoparticle-gas-diffusion-electrode-in-realistic-dynamic-pv-driven.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046720
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190629
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)188562
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)186878
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Helmholtz: American Chemical Society 01/01/2023
|0 PC:(DE-HGF)0122
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERG FUEL : 2022
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ENERG FUEL : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-3-20101013
|k IMD-3
|l Photovoltaik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-3-20101013
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21