001046742 001__ 1046742
001046742 005__ 20251006201536.0
001046742 0247_ $$2doi$$a10.1016/j.ejmech.2025.118103
001046742 0247_ $$2ISSN$$a0009-4374
001046742 0247_ $$2ISSN$$a0223-5234
001046742 0247_ $$2ISSN$$a1768-3254
001046742 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-03941
001046742 037__ $$aFZJ-2025-03941
001046742 082__ $$a610
001046742 1001_ $$0P:(DE-Juel1)180770$$aHoffmann, Chris$$b0$$ufzj
001046742 245__ $$aComparative evaluation of three 18F-fluorinated FAP ligands in rodent tumor models
001046742 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001046742 3367_ $$2DRIVER$$aarticle
001046742 3367_ $$2DataCite$$aOutput Types/Journal article
001046742 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759752604_11939
001046742 3367_ $$2BibTeX$$aARTICLE
001046742 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046742 3367_ $$00$$2EndNote$$aJournal Article
001046742 500__ $$aThis work was supported by Deutsche Forschungsgemeinschaft (DFG; grant number ZL 65/4-1), the Shota Rustaveli National Science Foundation of Georgia (SRNSFG; grant number JFZ–II–22-074), and the Excellent Research Support Program, University of Cologne (UoC) Forum 2023 (Multimodal Preclinical Imaging Platform University Cologne [MUPIC]).
001046742 520__ $$aFibroblast activation protein (FAP) is almost exclusively expressed on cancer-associated stromal cells, making it apromising target for tumor imaging by positron emission tomography (PET). While 68Ga- or Al[18F]F-labeled FAPinhibitors (FAPIs) have been characterized in detail, the potential advantages of FAPIs containing a covalentlybound 18F-label remain largely unknown. The aim of the present work was to address this gap by comparing twoFAPIs with a covalently bound 18F-label and the chelator-based radioligand Al[18F]F-FAPI-42.The 18F-labeled FAPIs were prepared by direct (6-[18F]F-FAPI) or indirect ([18F]AFA-FAPI) radiofluorination,or by the Al[18F]F chelation method (Al[18F]F-FAPI-42), which afforded the tracers in activity yields of 11–57 %and with molar activities of 5–170 GBq/μmol. Cellular uptake studies revealed significantly higher accumulationof all three candidates in HT1080-FAP compared to HT1080-WT cells. 6-[18F]F-FAPI and Al[18F]F-FAPI-42showed comparable FAP-selectivity and tumor uptake in mice inoculated with the two cell lines and rats bearingsubcutaneous DSL-6A/C1 tumors, while no in vivo FAP-selectivity was observed for [18F]AFA-FAPI. Al[18F]FFAPI-42 exhibited lower hepatobiliary excretion and faster clearance from FAP-negative tissues in the subcutaneoustumor models. In contrast, 6-[18F]F-FAPI showed higher tumor uptake and better tumor retention in anintracerebral U87 glioma tumor model. When compared to the established glioma tracer [18F]FET, both FAPtargetingtracers visualized intracerebral tumors with more than two-fold higher tumor-to-background ratios.In conclusion, while the chelator-based radioligand Al[18F]F-FAPI-42 is well-suited for visualization of peripheraltumors, 6-[18F]F-FAPI with a covalently bound 18F-label shows more favorable properties for braintumor imaging.
001046742 536__ $$0G:(DE-HGF)POF4-5253$$a5253 - Neuroimaging (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001046742 588__ $$aDataset connected to DataCite
001046742 7001_ $$0P:(DE-Juel1)180812$$aGröner, Benedikt$$b1
001046742 7001_ $$0P:(DE-HGF)0$$aBahutski, Victor$$b2
001046742 7001_ $$0P:(DE-Juel1)180330$$aEndepols, Heike$$b3$$ufzj
001046742 7001_ $$0P:(DE-Juel1)131657$$aLindemeyer, Johannes$$b4
001046742 7001_ $$0P:(DE-HGF)0$$aSaniternik, Sven$$b5
001046742 7001_ $$0P:(DE-Juel1)131817$$aDrewes, Birte$$b6$$ufzj
001046742 7001_ $$0P:(DE-HGF)0$$aTimmer, Marco$$b7
001046742 7001_ $$0P:(DE-Juel1)198856$$aGokhadze, Otari$$b8$$ufzj
001046742 7001_ $$0P:(DE-Juel1)131826$$aBrugger, Melanie$$b9$$ufzj
001046742 7001_ $$0P:(DE-Juel1)175142$$aNeumaier, Felix$$b10$$ufzj
001046742 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b11$$eCorresponding author$$ufzj
001046742 7001_ $$0P:(DE-Juel1)185610$$aZlatopolskiy, Boris D.$$b12$$ufzj
001046742 773__ $$0PERI:(DE-600)2005170-0$$a10.1016/j.ejmech.2025.118103$$gVol. 299, p. 118103 -$$p118103$$tEuropean journal of medicinal chemistry$$v299$$x0009-4374$$y2025
001046742 8564_ $$uhttps://juser.fz-juelich.de/record/1046742/files/Hoffmann%2C%20EJMC.pdf$$yOpenAccess
001046742 909CO $$ooai:juser.fz-juelich.de:1046742$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001046742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180770$$aForschungszentrum Jülich$$b0$$kFZJ
001046742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180330$$aForschungszentrum Jülich$$b3$$kFZJ
001046742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131817$$aForschungszentrum Jülich$$b6$$kFZJ
001046742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198856$$aForschungszentrum Jülich$$b8$$kFZJ
001046742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131826$$aForschungszentrum Jülich$$b9$$kFZJ
001046742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175142$$aForschungszentrum Jülich$$b10$$kFZJ
001046742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b11$$kFZJ
001046742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185610$$aForschungszentrum Jülich$$b12$$kFZJ
001046742 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5253$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001046742 9141_ $$y2025
001046742 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J MED CHEM : 2022$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046742 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J MED CHEM : 2022$$d2025-01-07
001046742 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
001046742 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046742 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger
001046742 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
001046742 920__ $$lyes
001046742 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x0
001046742 980__ $$ajournal
001046742 980__ $$aVDB
001046742 980__ $$aUNRESTRICTED
001046742 980__ $$aI:(DE-Juel1)INM-5-20090406
001046742 9801_ $$aFullTexts