001     1046742
005     20251006201536.0
024 7 _ |a 10.1016/j.ejmech.2025.118103
|2 doi
024 7 _ |a 0009-4374
|2 ISSN
024 7 _ |a 0223-5234
|2 ISSN
024 7 _ |a 1768-3254
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-03941
|2 datacite_doi
037 _ _ |a FZJ-2025-03941
082 _ _ |a 610
100 1 _ |a Hoffmann, Chris
|0 P:(DE-Juel1)180770
|b 0
|u fzj
245 _ _ |a Comparative evaluation of three 18F-fluorinated FAP ligands in rodent tumor models
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759752604_11939
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work was supported by Deutsche Forschungsgemeinschaft (DFG; grant number ZL 65/4-1), the Shota Rustaveli National Science Foundation of Georgia (SRNSFG; grant number JFZ–II–22-074), and the Excellent Research Support Program, University of Cologne (UoC) Forum 2023 (Multimodal Preclinical Imaging Platform University Cologne [MUPIC]).
520 _ _ |a Fibroblast activation protein (FAP) is almost exclusively expressed on cancer-associated stromal cells, making it apromising target for tumor imaging by positron emission tomography (PET). While 68Ga- or Al[18F]F-labeled FAPinhibitors (FAPIs) have been characterized in detail, the potential advantages of FAPIs containing a covalentlybound 18F-label remain largely unknown. The aim of the present work was to address this gap by comparing twoFAPIs with a covalently bound 18F-label and the chelator-based radioligand Al[18F]F-FAPI-42.The 18F-labeled FAPIs were prepared by direct (6-[18F]F-FAPI) or indirect ([18F]AFA-FAPI) radiofluorination,or by the Al[18F]F chelation method (Al[18F]F-FAPI-42), which afforded the tracers in activity yields of 11–57 %and with molar activities of 5–170 GBq/μmol. Cellular uptake studies revealed significantly higher accumulationof all three candidates in HT1080-FAP compared to HT1080-WT cells. 6-[18F]F-FAPI and Al[18F]F-FAPI-42showed comparable FAP-selectivity and tumor uptake in mice inoculated with the two cell lines and rats bearingsubcutaneous DSL-6A/C1 tumors, while no in vivo FAP-selectivity was observed for [18F]AFA-FAPI. Al[18F]FFAPI-42 exhibited lower hepatobiliary excretion and faster clearance from FAP-negative tissues in the subcutaneoustumor models. In contrast, 6-[18F]F-FAPI showed higher tumor uptake and better tumor retention in anintracerebral U87 glioma tumor model. When compared to the established glioma tracer [18F]FET, both FAPtargetingtracers visualized intracerebral tumors with more than two-fold higher tumor-to-background ratios.In conclusion, while the chelator-based radioligand Al[18F]F-FAPI-42 is well-suited for visualization of peripheraltumors, 6-[18F]F-FAPI with a covalently bound 18F-label shows more favorable properties for braintumor imaging.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Gröner, Benedikt
|0 P:(DE-Juel1)180812
|b 1
700 1 _ |a Bahutski, Victor
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Endepols, Heike
|0 P:(DE-Juel1)180330
|b 3
|u fzj
700 1 _ |a Lindemeyer, Johannes
|0 P:(DE-Juel1)131657
|b 4
700 1 _ |a Saniternik, Sven
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Drewes, Birte
|0 P:(DE-Juel1)131817
|b 6
|u fzj
700 1 _ |a Timmer, Marco
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Gokhadze, Otari
|0 P:(DE-Juel1)198856
|b 8
|u fzj
700 1 _ |a Brugger, Melanie
|0 P:(DE-Juel1)131826
|b 9
|u fzj
700 1 _ |a Neumaier, Felix
|0 P:(DE-Juel1)175142
|b 10
|u fzj
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 11
|e Corresponding author
|u fzj
700 1 _ |a Zlatopolskiy, Boris D.
|0 P:(DE-Juel1)185610
|b 12
|u fzj
773 _ _ |a 10.1016/j.ejmech.2025.118103
|g Vol. 299, p. 118103 -
|0 PERI:(DE-600)2005170-0
|p 118103
|t European journal of medicinal chemistry
|v 299
|y 2025
|x 0009-4374
856 4 _ |u https://juser.fz-juelich.de/record/1046742/files/Hoffmann%2C%20EJMC.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046742
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180770
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)180330
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131817
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)198856
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131826
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)175142
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)185610
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J MED CHEM : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J MED CHEM : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21