% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@ARTICLE{Plesser:1046791,
author = {Plesser, Hans Ekkehard and Davison, Andrew P. and Diesmann,
Markus and Fukai, Tomoki and Gemmeke, Tobias and Gleeson,
Padraig and Knight, James C. and Nowotny, Thomas and René,
Alexandre and Rhodes, Oliver and Roque, Antonio C. and Senk,
Johanna and Schwalger, Tilo and Stadtmann, Tim and Tiddia,
Gianmarco and van Albada, Sacha},
title = {{B}uilding on {M}odels — {A} {P}erspective for
{C}omputational {N}euroscience},
journal = {Cerebral cortex},
volume = {35},
number = {11},
issn = {1047-3211},
address = {Oxford},
publisher = {Oxford Univ. Press},
reportid = {FZJ-2025-03958},
pages = {bhaf295},
year = {2025},
abstract = {Neural circuit models are essential for integrating
observations of the nervous system into a consistent whole.
Public sharing of well-documented codes for such models
facilitates further development. Nevertheless, scientific
practice in computational neuroscience suffers from
replication problems and little re-use of circuit models.
One exception is a data-driven model of early sensory cortex
by Potjans and Diesmann which has advanced computational
neuroscience as a building block for more complex models. As
a widely accepted benchmark for correctness and performance,
the model has driven the development of CPU-based,
GPU-based, and neuromorphic simulators. On the tenth
anniversary of the publication of this model, experts
convened at the Käte-Hamburger-Kolleg Cultures of Research
at RWTH Aachen University to reflect on the reasons for the
model’s success, its effect on computational neuroscience
and technology development, and the perspectives this offers
for the future of computational neuroscience. This report
summarizes the observations by the workshop participants.},
cin = {IAS-6 / INM-10},
ddc = {610},
cid = {I:(DE-Juel1)IAS-6-20130828 / I:(DE-Juel1)INM-10-20170113},
pnm = {5232 - Computational Principles (POF4-523) / 5234 -
Emerging NC Architectures (POF4-523) / BMBF 01UK2104 - Käte
Hamburger Kolleg "Kulturen des Forschens" (BMBF-01UK2104) /
JL SMHB - Joint Lab Supercomputing and Modeling for the
Human Brain (JL SMHB-2021-2027) / HBP SGA1 - Human Brain
Project Specific Grant Agreement 1 (720270) / HBP SGA2 -
Human Brain Project Specific Grant Agreement 2 (785907) /
HBP SGA3 - Human Brain Project Specific Grant Agreement 3
(945539) / EBRAINS 2.0 - EBRAINS 2.0: A Research
Infrastructure to Advance Neuroscience and Brain Health
(101147319) / MULTIRULES - Synaptic multi-factor learning
rules: from action potentials to behaviour (268689) / DFG
project G:(GEPRIS)313856816 - SPP 2041: Computational
Connectomics (313856816) / $HiRSE_PS$ - Helmholtz Platform
for Research Software Engineering - Preparatory Study
$(HiRSE_PS-20220812)$ / ACA - Advanced Computing
Architectures (SO-092) / BMBF 16ME0399 - Verbundprojekt:
Neuro-inspirierte Technologien der künstlichen Intelligenz
für die Elektronik der Zukunft - NEUROTEC II -
(BMBF-16ME0399) / BMBF 03ZU1106CA - NeuroSys:
Algorithm-Hardware Co-Design (Projekt C) - A (03ZU1106CA) /
RenormalizedFlows - Transparent Deep Learning with
Renormalized Flows (BMBF-01IS19077A) / Brain-Scale
Simulations $(jinb33_20220812)$ / ICEI - Interactive
Computing E-Infrastructure for the Human Brain Project
(800858)},
pid = {G:(DE-HGF)POF4-5232 / G:(DE-HGF)POF4-5234 /
G:(DE-82)BMBF-01UK2104 / G:(DE-Juel1)JL SMHB-2021-2027 /
G:(EU-Grant)720270 / G:(EU-Grant)785907 / G:(EU-Grant)945539
/ G:(EU-Grant)101147319 / G:(EU-Grant)268689 /
G:(GEPRIS)313856816 / $G:(DE-Juel-1)HiRSE_PS-20220812$ /
G:(DE-HGF)SO-092 / G:(DE-82)BMBF-16ME0399 /
G:(BMBF)03ZU1106CA / G:(DE-Juel-1)BMBF-01IS19077A /
$G:(DE-Juel1)jinb33_20220812$ / G:(EU-Grant)800858},
typ = {PUB:(DE-HGF)16},
doi = {10.1093/cercor/bhaf295},
url = {https://juser.fz-juelich.de/record/1046791},
}