001     1046791
005     20251111202158.0
024 7 _ |a 10.1093/cercor/bhaf295
|2 doi
024 7 _ |a 10.34734/FZJ-2025-03958
|2 datacite_doi
037 _ _ |a FZJ-2025-03958
082 _ _ |a 610
100 1 _ |a Plesser, Hans Ekkehard
|0 P:(DE-Juel1)169781
|b 0
|u fzj
245 _ _ |a Building on Models — A Perspective for Computational Neuroscience
260 _ _ |a Oxford
|c 2025
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762850806_6680
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neural circuit models are essential for integrating observations of the nervous system into a consistent whole. Public sharing of well-documented codes for such models facilitates further development. Nevertheless, scientific practice in computational neuroscience suffers from replication problems and little re-use of circuit models. One exception is a data-driven model of early sensory cortex by Potjans and Diesmann which has advanced computational neuroscience as a building block for more complex models. As a widely accepted benchmark for correctness and performance, the model has driven the development of CPU-based, GPU-based, and neuromorphic simulators. On the tenth anniversary of the publication of this model, experts convened at the Käte-Hamburger-Kolleg Cultures of Research at RWTH Aachen University to reflect on the reasons for the model’s success, its effect on computational neuroscience and technology development, and the perspectives this offers for the future of computational neuroscience. This report summarizes the observations by the workshop participants.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 1
536 _ _ |a BMBF 01UK2104 - Käte Hamburger Kolleg "Kulturen des Forschens" (BMBF-01UK2104)
|0 G:(DE-82)BMBF-01UK2104
|c BMBF-01UK2104
|x 2
536 _ _ |a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|0 G:(DE-Juel1)JL SMHB-2021-2027
|c JL SMHB-2021-2027
|x 3
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 4
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 5
536 _ _ |a HBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)
|0 G:(EU-Grant)945539
|c 945539
|f H2020-SGA-FETFLAG-HBP-2019
|x 6
536 _ _ |a EBRAINS 2.0 - EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health (101147319)
|0 G:(EU-Grant)101147319
|c 101147319
|f HORIZON-INFRA-2022-SERV-B-01
|x 7
536 _ _ |a MULTIRULES - Synaptic multi-factor learning rules: from action potentials to behaviour (268689)
|0 G:(EU-Grant)268689
|c 268689
|f ERC-2010-AdG_20100317
|x 8
536 _ _ |a DFG project G:(GEPRIS)313856816 - SPP 2041: Computational Connectomics (313856816)
|0 G:(GEPRIS)313856816
|c 313856816
|x 9
536 _ _ |a HiRSE_PS - Helmholtz Platform for Research Software Engineering - Preparatory Study (HiRSE_PS-20220812)
|0 G:(DE-Juel-1)HiRSE_PS-20220812
|c HiRSE_PS-20220812
|x 10
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 11
536 _ _ |a BMBF 16ME0399 - Verbundprojekt: Neuro-inspirierte Technologien der künstlichen Intelligenz für die Elektronik der Zukunft - NEUROTEC II - (BMBF-16ME0399)
|0 G:(DE-82)BMBF-16ME0399
|c BMBF-16ME0399
|x 12
536 _ _ |a BMBF 03ZU1106CA - NeuroSys: Algorithm-Hardware Co-Design (Projekt C) - A (03ZU1106CA)
|0 G:(BMBF)03ZU1106CA
|c 03ZU1106CA
|x 13
536 _ _ |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)
|0 G:(DE-Juel-1)BMBF-01IS19077A
|c BMBF-01IS19077A
|x 14
536 _ _ |a Brain-Scale Simulations (jinb33_20220812)
|0 G:(DE-Juel1)jinb33_20220812
|c jinb33_20220812
|f Brain-Scale Simulations
|x 15
536 _ _ |a ICEI - Interactive Computing E-Infrastructure for the Human Brain Project (800858)
|0 G:(EU-Grant)800858
|c 800858
|f H2020-SGA-INFRA-FETFLAG-HBP
|x 16
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Davison, Andrew P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Diesmann, Markus
|0 P:(DE-Juel1)144174
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Fukai, Tomoki
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gemmeke, Tobias
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gleeson, Padraig
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Knight, James C.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nowotny, Thomas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a René, Alexandre
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Rhodes, Oliver
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Roque, Antonio C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Senk, Johanna
|0 P:(DE-Juel1)162130
|b 11
|u fzj
700 1 _ |a Schwalger, Tilo
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Stadtmann, Tim
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Tiddia, Gianmarco
|0 P:(DE-HGF)0
|b 14
700 1 _ |a van Albada, Sacha
|0 P:(DE-Juel1)138512
|b 15
|u fzj
773 _ _ |a 10.1093/cercor/bhaf295
|0 PERI:(DE-600)1483485-6
|n 11
|p bhaf295
|t Cerebral cortex
|v 35
|y 2025
|x 1047-3211
856 4 _ |u https://juser.fz-juelich.de/record/1046791/files/Invoice_SOA25LT012693.pdf
856 4 _ |u https://juser.fz-juelich.de/record/1046791/files/bhaf295.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046791
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p ec_fundedresources
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169781
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)162130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)138512
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 1
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREB CORTEX : 2022
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
920 1 _ |0 I:(DE-Juel1)INM-10-20170113
|k INM-10
|l Jara-Institut Brain structure-function relationships
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a I:(DE-Juel1)INM-10-20170113
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21