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Neural circuit models are essential for integrating observations of the nervous system into a consistent whole. Public sharing of well-
documented codes for such models facilitates further development. Nevertheless, scientific practice in computational neuroscience 
suffers from replication problems and little re-use of circuit models. One exception is a data-driven model of early sensory cortex 
by Potjans and Diesmann that has advanced computational neuroscience as a building block for more complex models. As a 
widely accepted benchmark for correctness and performance, the model has driven the development of CPU-based, GPU-based, 
and neuromorphic simulators. On the 10th anniversary of the publication of this model, experts convened at the Käte Hamburger
Kolleg Cultures of Research at RWTH Aachen University to reflect on the reasons for the model’s success, its effect on computational
neuroscience and technology development, and the perspectives this offers for the future of computational neuroscience. This report
summarizes the observations by the workshop participants.
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Introduction 
The neural network model by Potjans and Diesmann (2014) 
represents the circuitry found under 1 mm2 of early sensory 
cortex; we refer to this model as PD14 for brevity. In the 
spirit of FAIR (findable, accessible, interoperable, reusable) and 
open science, the authors made PD14 a vailable to the research
community in multiple versions, including a version expressed
in the simulator-agnostic language PyNN (Davison et al. 2009) 
that they shared on the Open Source Brain platform (Gleeson 
et al. 2019). Comprising some 77,000 neurons connected via about 
300 million synapses, the model can be specified in fewer than 
400 lines of Python code (excluding documentation) and can be 

simulated on modern laptops, although systematic exploration
benefits from use of compute clusters.

On the occasion of the 10th anniversary of the publication, 
experts from three continents, ranging from early post-doc to 
senior scientist and from computational neuroscientist to elec-
trical engineer, convened at the Käte Hamburger Kolleg Cultures 
of Research at RWTH Aachen University from April 3 to 4, 2024, to
assess the impact of PD14 on the practice and culture of research
in computational neuroscience and related disciplines.

Hans Ekkehard Plesser opened the workshop with a brief 
review of spiking sim ulation history since the pioneering work
by Farley and Clark (1954). Sadly, in spite of an urgent call by
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Fig. 1. Citations of the PD14 model. Gray (lighter) bars: cumulative 
number of citations in peer-reviewed publications, including references 
to the online-first version published in Cerebral Cortex in December 2012. 
Blue (darker) bars: cumulative number of articles using the model. The 
model code and bibliographic data curated by the authors are available 
(https://github.com/INM-6/microcircuit-PD14-model). 

De Schutter (2008) for more systematic model sharing using
common tools, Senk et al. (2022) found that roughly half of 
neuronal network models surveyed on ModelDB (McDougal et al. 
2017) and Open Source Brain (Gleeson et al. 2019)  were  still  
implemented in general-purpose programming languages such 
as MATLAB, Python, or C, even though modeling in computational 
neuroscience allows for a clear separation between the specific
scientific model and the generic brain simulator (Einevoll et al. 
2019). It is this separation that enables the representation of PD14 
by a short script using high-level concepts from the neuroscience 
domain. Nevertheless, current research practice in computational 
neuroscience still appears to be characterized by a lack of model 
sharing in the sense of researchers actively building new models
based on model implementations by others. The PD14 model is a
rare exception to this pattern (Fig. 1): As of March 2024, 52 peer-
reviewed studies using the model as building blocks had been
published and 233 had cited it.

While the PD14 model was originally conceived in 2006 to 
gain deeper neuroscientific insights into the relation between 
network structure and dynamics, it soon stimulated research in
multiple ways as illustrated in Fig. 2. First of all, scientists started 
to use PD14 as a building block for mor e complex brain models;
some examples are discussed in section PD14 as a Building Block. 
Second, the model became popular as a testbed for the validation 
of mean-f ield analyses of network dynamics as detailed in
section PD14 as a Reference. Third, PD14 played an important 
role in shaping approaches to model sharing as described in
section PD14 Driving Model Sharing, as participants in the large-
scale European neuroscience pr oject FACETS (2005 to 2010,
https://facets.kip.uni-heidelberg.de) realized that a common 
language was required to reliably transfer network models 
from one simulation engine to another, including neuromorphic 
engines. Early versions of PD14 represented a challenging test 
case for the emerging PyNN language, and the model later 
served as a test case for the documentation and cur ation of
complex model code on platforms such as Open Source Brain to
facilitate re-use. These efforts on model sharing were furthered
by the subsequent large-scale projects BrainScaleS (2011 to
2015, https://brainscales.kip.uni-heidelberg.de) and Human Brain 
Project (2013 to 2023, https://www.humanbrainproject.eu)  and  

Fig. 2. Impact of the PD14 model. The model of the cortical microcircuit 
(center) had an impact on five aspects of research (clockwise from top): 
conceived to provide neuroscience insight, the model became a building 
block of more advanced models, served as r eference for the validation 
of mean-field theories, drove the development of methods for model 
sharing, and became a standard for benchmarking of neur omorphic and
GPU systems.

through participation in the project preparing for the use of the
K computer in Japan (Diesmann 2013). Finally, the model has 
helped to push the boundaries of simulation technology as a k ey
benchmark for neuromorphic systems as summarized in section
PD14 as a Neuromorphic Benchmark and recently reviewed in 
detail by Senk et al. (2025). 

Plesser challenged the participants to discuss why the PD14 
model has been re-used by other researchers and on this example 
to elucidate what it takes for a model to be re-used not only in
computational neuroscience but across disciplines.

A digital twin for the cortical microcircuit
Markus Diesmann reported that work on the model started in 
May 2006 at the Bernstein Center for Computational Neuroscience 
at the Albert-Ludwigs-University in Freiburg, Germany, and came 
to fruition between October 2006 and the spring of 2011 at the 
RIKEN Brain Science Institute in Wa ko-shi, Japan. The model was
first presented publicly at the Annual Meeting of the Society
for Neuroscience in 2008 (Potjans and Diesmann 2008)  and  was  
first used as a benchmark case by external researchers in 2010
(Djurfeldt et al. 2010). The scientific paper describing the model 
and its anchoring in anatomical and physiological data was com-
pleted at Jülich Research Centre in the spring of 2012 and pub-
lished online ahead of print as an open-access publication in
December 2012. Due to production delays common at the time,
the paper did not appear in print in Cerebral Cortex before March
2014.

An executable version of the PD14 model was released in June 
2014 as part of NEST 2.4.0. T his version was formulated in the
simulation language SLI (Diesmann et al. 1995). Just a month later, 
an implementation of PD14 in the simulator-independent network 
specification language PyNN was published as part of the PyNN
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code base (https://github.com/NeuralEnsemble/PyNN/commit/4 
f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0), allowing for model 
exploration via Python, which was rapidly becoming the program-
ming platform of choice in computational neuroscience (Muller 
et al. 2015). A Python implementation using NEST’s native PyNEST 
interface (Eppler et al. 2009) followed with NEST 2.12.0 in March 
2017 and since December 2017 the model has been available on
the Open Source Brain platform (https://v2.opensourcebrain.org/ 
repositories/368). 

Diesmann pointed out that work on the model started in the 
mid-2000s, a decade after the seminal work by van Vreeswijk 
and Sompolinsky (1996) and Amit and Brunel (1997) established 
the value of networks operating in a regime of balanced excita-
tion and inhibition. At this time, work on the dynamics of such 
networks focused on two -population models guided by a funda-
mental construction principle of the local network in a cortical
layer (Brunel 2000). The local cortical network is attractive for 
experimentalists and theoreticians to this day because it exhibits 
a dual universality: (i) In the development of mammals, the 
volume of the brain increased by three orders of magnitude from 
mouse to human, but the structure of the local cortical network 
below a square millimeter patch of surface remained largely
unchanged; (ii) the structure is to a large extent independent
of whether a cortical area processes auditory, visual, or tactile
information, or is involved in motor planning (see the section
Building Block for Models with Larger Explanatory Scope for the 
nature of differences). This universality gives natural scientists 
confidence that there are fundamental principles to be discov-
ered. PD14 was not the first nor the last model attempting to
capture key properties of the local cortical circuit. An influential
review by Douglas and Martin (2004) made the notion of the 
canonical microcircuit known to a wide audience. Further stud-
ies reproduced complex dynamical featur es like the transition
between sleep and wakefulness (Bazhenov et al. 2002; Hill and 
Tononi 2005) and the occurrence of oscillatory phenomena (Traub 
et al. 2005) or concentrated on information pr ocessing capabilities
(Haeusler and Maass 2007; Bastos et al. 2012; Habenschuss et al. 
2013). 

Digital twins as digital representations of the elements and 
interactions making up a piece of nature or technology ha ve been
widely adopted in neuroscience over the past decade (Amunts 
et al. 2024). In line with this development, several studies have 
been published since 2010, aiming at the integration of anatomi-
cal and physiological data and the simultaneous reproduction of 
a range of network-level observations. A number of these models 
attempt to represent all the neur ons and synapses in the volume
of cortex they describe to enable multi-scale investigations and
avoid the risks of distortions of activity by down-scaling (van 
Albada et al. 2015). Markram et al. (2015) presented a model 
based on multi-compartment model neurons, while Antolik et al. 
(2024) restricted the single-neuron dynamics to point-neuron 
models but covered a cortical area of 5 × 5  mm2 of cat primary
visual cortex with a neuron density scaled down to 10%. Finally,
Billeh et al. (2020) studied the mouse primary visual cortex using 
cell-type-specific dynamics. All these studies made their models 
available as open source and are based on well-established open-
source simulation codes. In the light of these developments in the
community, Diesmann entitled his historical account “A digital
twin for the cortical microcircuit.”

Diesmann elaborated that the primary research question moti-
vating the construction of the PD14 model was to understand how 
the actual structure of the cortical network shapes the observed 
network dynamics. To achieve this, the model starts from 

strong hypotheses about the arc hitecture of cortex such as the
organization of the nerve cells into four layers, each containing
an excitatory and an inhibitory neuron population (model sketch
in Fig. 2). To reduce the influence of the single-neuron dynamics 
to a minimum, single neurons are represented by point-neuron 
models identical across all populations. The only property 
distinguishing inhibitory neurons from excitatory neurons is that 
their outgoing synapses are inhibitory with a weight increased 
by a constant factor. Apart from this factor, all synaptic weights 
are drawn from the same distribution (with specific exceptions). 
What was left to specify were the numbers of neurons in each 
population and the 8 × 8 connection probabilities. The size of the 
model was chosen such that the majority of the local synapses 
of a neuron are captured and parallel to the cortical surface the
network can still be considered as randomly connected. This
resulted in a surface area of a square millimeter. Diesmann
concluded his historical review by remarking that PD14 was
essentially constructed by a single doctoral student and may
mark a crossing point in the sense that constructing larger and
more complex models from scratch will require the collaboration
of larger groups of researchers.

PD14 as a b uilding block
Re-use for a model of attention
Cortical microcircuits are a fundamental processing unit with a 
stereotyped multilayer circuit structure consisting of excitatory 
cells and several subtypes of inhibitory cells. These neural circuits 
receive bottom–up input from the peripheral sensory regions in 
layer 4 and top–down inputs from higher cortical areas in super-
ficial and deep layers. They are thought to be pivotal in processing 
bottom–up sensory and top–down attention signals. The PD14 
model allows us to test how these two qualitatively different types
of inputs interact within cortical microcircuits to perform visual
processing. In the visual cortex, the spatial and feature-based
modes of attention are known to influence visual processing
differently (McAdams and Maunsell 1999; Reynolds et al. 1999; 
Martinez-Trujillo and Treue 2004; Ling et al. 2009). Tomoki Fukai 
reported that as part of RIKEN’s K computer project (https:// 
www.riken.jp/en/collab/resources/kcomputer/), Wagatsuma et al. 
constructed a minimal model of the visual cortical circuit by 
laterally connecting two PD14 models to explore the differential 
effects of spatial- and feature-based attention on the processing
of orientation selectivity of visual cortical neurons (Wagatsuma 
et al. 2011; Wagatsuma et al. 2013). Their model simultaneously 
accounted for the multiplicative scaling of neuronal responses 
in spatial attention and additive modulations of orientation tun-
ing curves in feature-based attention. Furthermore, the model 
predicted contrasting differences in attentional modulations of
neural responses between different cortical layers.

Next, Fukai discussed the generation mechanisms of gamma 
(30 ∼ 80 Hz) and beta (20 ∼ 30 Hz) oscillations in a local cortical 
circuit model. The Potjans–Diesmann model has the virtue of rep-
resenting all cortical layers and biologically realistic connectivity 
structures but only possesses pyramidal cells and one subtype of 
inhibitory neurons, parvalbumin (PV) interneurons. Therefore, the 
model is still oversimplified compared to cortical microcir cuits.
A refined microcircuit model involves PV, somatostatin (SOM),
and vasoactive intestinal polypeptide (VIP) interneuron subtypes,
which allows for investigations of attentional modulations of
different interneuron subtypes (Wagatsuma et al. 2023). However, 
this model does not distinguish the cortical layers, and differential 
attentional modulations across cortical layers therefore cannot

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/35/11/bhaf295/8317407 by Forschungszentrum

 Juelich G
m

bH
 Zentralbibliothek user on 11 N

ovem
ber 2025

https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://github.com/NeuralEnsemble/PyNN/commit/4f09b4ef05e117af6404e5ff5f7b6568dd5ba2b0
https://v2.opensourcebrain.org/repositories/368
https://v2.opensourcebrain.org/repositories/368
https://v2.opensourcebrain.org/repositories/368
https://v2.opensourcebrain.org/repositories/368
https://v2.opensourcebrain.org/repositories/368
https://www.riken.jp/en/collab/resources/kcomputer/
https://www.riken.jp/en/collab/resources/kcomputer/
https://www.riken.jp/en/collab/resources/kcomputer/
https://www.riken.jp/en/collab/resources/kcomputer/
https://www.riken.jp/en/collab/resources/kcomputer/
https://www.riken.jp/en/collab/resources/kcomputer/
https://www.riken.jp/en/collab/resources/kcomputer/
https://www.riken.jp/en/collab/resources/kcomputer/


4 | Plesser et al.

be explored. Their results suggest that inhibitory signals from PV 
and SOM neurons preferentially induce neuronal firing at gamma 
(30 ∼ 100 Hz) and beta (20 ∼ 30 Hz) frequencies, respectively, in 
agreement with observed physiological results. Furthermor e, the
model predicts that rapid VIP-to-SOM inhibition underlies marked
attentional modulation at low-gamma frequencies (30 ∼ 50 Hz)
observed by Womelsdorf et al. (2006). Altogether, results suggest 
distinct and cooperative roles of inhibitory interneuron classes in 
visual perception and show the potential of large-scale simula-
tion models of the brain’s neural networks for exploring neural
dynamics related to cognitive functions.

Re-implementing and modifying PD14
Antonio Roque started his presentation by referencing his group’s 
earlier efforts to replicate spiking activity patterns in large-
scale cortical models. These initial studies were hampered by 
rudimentary models that failed to accurately represent the 
intricate details of cortical connectivity. The advent of the PD14 
model marked a significant advancement in their research. This 
model alleviated the burden of reconstructing the anatomy of 
a cortical column, a task previousl y insurmountable for smaller
groups, by providing an accessible and reliable graph structure
for the development of models for the study of cortical dynamics.
Roque highlighted that a key feature of the PD14 model is its
thorough and standardized documentation, facilitating its ready
application.

Roque detailed the various adaptations of the PD14 model 
developed in his laboratory. These adaptations maintain the same 
random graph structure of the original model, connecting eight 
populations of excitatory and inhibitory neurons. However, in 
contrast to the original model, where both neuron types were rep-
resented by the same leaky integrate-and-fire neur on model, the
variants employ different neuron models. Examples include adap-
tive exponential integrate-and-fire neurons to represent neurons
from different electrophysiological classes (Kamiji et al. 2017; 
Shimoura 2021) and stochastic neurons (Roque et al. 2017; 
Cordeiro 2019). The addition of population-specific neuron types 
had a significant impact on the spontaneous activity of the 
network. However, the introduction of stochasticity did not
produce notable deviations from the deterministic model.

Roque also discussed two distinct replications of the PD14 
model: one implemented in Brian 2 (Shimoura et al. 2018)  and  
another in NetPyNE (Romaro et al. 2021), the latter accompanied 
by a recipe for scaling the model’s size. He emphasized that repli-
cating complex models such as PD14 offers an invaluable training 
experience for students, exposing them to the systematic and 
rigorous methodology behind these models. Roque advocated for
the inclusion of such replication tasks in the fundamental training
of students enrolled in computational neuroscience courses.

Building block for models with larger
explanatory scope
The PD14 model forms a natural building block for multi-area 
models of cortex when the detailed properties of the microcircuits 
are adapted to the peculiarities of each area. Sacha van Albada 
discussed how such multi-area models can be used to link 
local and global cortical connectivity to multi-scale resting-
state dynamics. This work investigates how certain aspects
of cortical dynamics, not captured by local models such as
PD14, can emerge from interarea interactions: a spectrum of
spiking activity with enhanced power at low frequencies (Chu 
et al. 2014), propagation of activity predominantly down the 
visual hierarchy (Dentico et al. 2014), and a pattern of interarea 

correlations as seen in resting-state BOLD fMRI (blood-oxygen-
level-dependent functional magnetic resonance imaging). These 
dynamical features were addr essed in a model of all vision-
related areas in one hemisphere of macaque cortex (Schmidt et al. 
2018a, 2018b); code is provided on GitHub (https://github.com/ 
INM-6/multi-area-model). In this model, the relative indegrees 
of the different population pairs were kept the same as in PD14 
while adjusting the population sizes to the macaque areas and 
layers. This choice was motivated by the strong role of indegrees 
in determining firing rates and the aim to keep the relative 
firing r ates of the layers and populations similar to those in
PD14. However, achieving reasonable firing rates required small
adjustments in the model’s connectivity, informed by mean-field
theory (Schuecker et al. 2017). Increasing the strength of the 
cortico-cortical synapses, particularly onto inhibitory cells, then 
brought the model close to a transition between a low-activity and 
a high-activity state, with population bursts propagating across
areas.

While the multi-area model goes a long way toward repro-
ducing the aforementioned aspects of cortical dynamics, it still 
has shortcomings that were addressed in a refined version of the
model (Pronold et al. 2024a). Following a motor cortex model of
Rostami et al. (2024), this refined model divides each layer and 
area into joint clusters of excitatory and inhibitory neurons. The 
enhanced local balance afforded b y this change supports plausi-
ble firing rate distributions in all areas, where the Schmidt et al. 
(2018b) model still had populations with vanishing or excessive 
firing rates. In addition, the E/I clustering enables both feedfor-
ward and feedback activity propagation that is much mor e robust
and removes the strong synchrony inherent in the population
bursts of the Schmidt et al. (2018b) model. Th e Pronold et al. 
(2024a) model moreover reproduces the experimentally observed 
quenched neural variability upon visual stimulation (Churchland 
et al. 2010). 

A further multi-area model presented by Sacha van Albada 
encompasses all areas in a coarse parcellation of a human cortical
hemisphere (Pronold et al. 2024b). Just like the macaque models, it 
represents each area by a 1 mm2 microcircuit with the full density 
of neurons and synapses. However, in this work, the authors chose 
to maintain the relative local connection probabilities as opposed 
to the indegrees of the PD14 model. The reasoning was that certain 
areas have thin layers (particularly layer 4) with very few neurons 
that would otherwise nevertheless have to supply large numbers 
of synapses. Maintaining the relative connection probabilities, this 
problem is eliminated, as the numbers of synapses are in this 
case approximately proportional to the numbers of neurons. As 
opposed to the macaque model, the human cortex model did not 
require a mean-field-based stabilization to achieve a reasonable
low-rate state. In addition, the experimentally observed spiking
statistics and pattern of interarea correlations are reproduced in
a stable low-rate state instead of just below a transition to a high-
rate state. Matching the macaque model, experimentally observed
activity is well captured when the cortico-cortical synapses are
stronger than the local ones. The code for the Pronold et al. (2024b) 
model is also freely available (https://github.com/INM-6/human-
multi-area-model). 

PD14 as a r eference
A detailed anatomical model as driver of 
analytical coarse-grained descriptions
The PD14 model is a microscopic model in the sense that each 
neuron of a large neural network is modeled (and simulated)
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individually. While microscopic models can be related to and 
constrained by measured biophysical parameters, the inherent 
complexity of these high-dimensional systems precludes a full 
theoretical understanding of the emerging dynamical behavior. 
Moreover, in the case of performance-critical simulations such 
as the exploration and fitting of parameters or large-scale brain 
simulations, a detailed microscopic simulation of the network 
resolved at the level of individual neurons may not be fast 
enough—and not be necessary . Instead, coarse-grained, meso-
scopic or macroscopic mean-field models are efficient to simulate
and amenable to mathematical analysis. To maintain the link to
biophysical parameters and to be consistent across scales, meso-
and macroscopic models need to be derived “bottom–up” from—
and tested against—a realistic microscopic model.

Tilo Schwalger noted that the PD14 model has ideal proper-
ties for this purpose. On the one hand, as a reference imple-
mentation of a cortical column, PD14 provides the biologically 
relevant microscopic foundation for theoretical analysis. On the 
other hand, the model features convenient mathematical prop-
erties that make it ideally suited for a mean-field reduction: It 
is structured as a network of roughly homogeneous neuronal 
populations, and it is based on integrate-and-fire model neurons. 
However, the PD14 model also exposes challenges for a mean-field 
theory of cortical circuits, notably the fluctuations caused by the 
finite number of neurons and the fast n onstationary dynamics
governed by single-neuron dynamics with refractoriness. Fast
nonstationary dynamics of population activities can be obtained
from the dynamics of the membrane-potential distributions of
interacting neuron populations. A numerically efficient method to
evolve distributions of membrane potentials forward in time is the
DiPDE method (partial differential equations with displacement,
Iyer et al. 2013). Cain et al. (2016), Schwalger et al. (2017),  a  nd
Osborne et al. (2022) returned to PD14 to demonstrate the capabil-
ities of generic simulation code for multi-dimensional population
density models such as MIIND (de Kamps et al. 2008)  and  show  
correspondence of the results with DiPDE in the transient and
stationary spike rates.

Schwalger presented a mesoscopic theory (Schwalger et al. 
2017) that starts from a network of generalized integrate-and-
fire (GIF) neurons—a neuron model that reliably reproduces the 
spiking responses of real cortical cells and whose parameters are
catalogued in the Allen Cell Types Database for various cell types
(Teeter et al. 2018). The mesoscopic mean-field dynamics is given 
by a stochastic integral equation that precisely captures finite-
size fluctuations and fast nonstationary dynamics. Applied to a 
variant of the PD14 model based on GIF neurons, the numerical 
implementation of the mesoscopic model yields a speed-up of 
about 150 times compared to the corresponding microscopic sim-
ulation. The central object in the theory is a hazard rate function,
which is not present in the original PD14 model driven by exter-
nal Poisson noise. However, several approximations are available
(Schwalger 2021), enabling an efficient mesoscopic mean-field 
description also for the original PD14 model. Finally, Schwalger 
explained how the mesoscopic dynamics can be further reduced
to highly efficient, low-dimensional stochastic dynamics based on
an eigenfunction expansion.

Model epistemics: how to select models in the
face of data
Large models like PD14 have a large parameter space and thus 
also a large functional space. If ultimately the goal of these models 
is to study neural circuits, it is important to select parameters 
that actually represent those circuits—to ensure that studies are 

scientificall y relevant and that simulators are benchmarked in
scientifically relevant regimes.

One challenge in this context is that many different combi-
nations of parameters may nevertheless define models that are 
functionally v ery similar—a situation described as “epistemic
uncertainty,” ie uncertainty in the model (Kiureghian and 
Ditlevsen 2009; Hüllermeier and Waegeman 2021). With modern 
machine learning tools, it is increasingly possible to find large 
ensembles of candidate models, each the local optimum of some 
loss. Alexandre René showed that this indeed occurs when we
fit a mesoscopic model according to Schwalger et al. (2017) to a 
reduced variant of the microscopic PD14 model (René et al. 2020). 
However, not all of the local optima found correspond to equally 
good candidate models; we would like to focus research efforts
on those models that are best supported by the data.

Key to this goal is precisely defining what we mean by “models” 
and “best supported.” Typically, in neuroscience (and in science 
more broadly), models consist of both a set of equations and 
a set of parameters; the best models are those that not only
reproduce the data observed during an experiment but can also
predict observations expected in replications or new experiments.
As René and Longtin (2025) explain, this is at odds with the 
assumptions underlying most statistical methods of model selec-
tion. First, classic methods such as the Akaike and Bayesian
Information Criteria (Akaike 1973; Schwarz 1978) assume that the 
model will be refit to every new dataset: They do not compare 
specific sets of parameters but rather entire families of models. 
In other words, they compare the global optima of models defined 
by different equations and are inappropriate for comparing local
minima of models defined with the same equations. Second, even
a method like the Widely Applicable Information Criterion, which
compares the expected loss over replications (Vehtari et al. 2017), 
still assumes that the data-generating process is perfectly repro-
ducible—an unr ealistic assumption for real-world experiments.

To identify the best parameter sets for a neural circuit, we 
need a comparison method that accounts for the variability of
experiments across replications. René presented a method (René 
and Longtin 2025) that does so by applying the following prin-
ciple: Candidate models represent the part of the experiment 
that we understand and can replicate. Concretely, the discrepancy 
between model predictions and observations is used to predict the 
uncertainty on a model’s expected loss, also known as the risk.
The result is that to a model A is associated a distribution of risk
values RA, representing the expected loss across replications. A 
model B can be confidently rejected by A if it has a higher risk
across almost all replications.

PD14 driving model sharing
Platforms and standards for sharing
Padraig Gleeson presented initiatives related to model sharing 
and standardization in neuroscience, as well as the ways these 
have been used to make PD14 more accessible to modelers and 
to mana ge and maintain the multiple versions of the model that
have been produced. The Open Source Brain platform (OSB, http:// 
www.opensourcebrain.org) is an initiative to encourage the open 
sharing and collaborative de velopment of models in computa-
tional neuroscience (Gleeson et al. 2019). The source files for OSB 
models are hosted on code-sharing platforms like GitHub (which 
provides all the standard functionality required for open-source 
development like change history tracking, issue management, 
and user authentication), and the main OSB website lists and links
to a number of these model repositories, allowing users to search
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for models of interest. OSB also provides additional neuroscience-
specific tools for visualizing, simulating, and analyzing them.

The OSB repository for PD14 available on GitHub (https:// 
github.com/OpenSourceBrain/PotjansDiesmann2014) provides 
versions of the model developed in the original NEST SLI scripts, 
in PyNEST Python scripts, and an implementation of the network
in the PyNN modeling language (Davison et al. 2009;  see  sect  ion
Disentangling Model from simulation), as well as an export of the 
model to NeuroML 2 (Cannon et al. 2014), a simulator-independent 
model description language based on the extensible markup 
language (XML). The original version of the OSB platform (v ersion
1) contains a project that is linked to this GitHub repository
(https://v1.opensourcebrain.org/projects/potjansdiesmann2014) 
and allows the user to load and visualize the NeuroML version o f
the model and analyze the connectivity (Fig. 4 of Gleeson et al. 
(2019)), as well as to run simple simulations. The more recently 
developed OSB version 2 of PD14 (https://v2.opensourcebrain.org/ 
repositories/368) links to the same GitHub repository and so will 
always refer to the latest version of the code. It offers additional 
functionality such as executing the model in a browser-based,
interactive computing environment based on JupyterLab.

Gleeson explained that, in addition to the primary goal of 
making the PD14 model more accessible for the community using 
OSB, working with such a robust and well-maintained model has 
helped test the underlying infr astructure for model development,
testing, and management on the platform. An example of this
is the OSB Model Validation framework (OMV, Gleeson et al. 
(2019)) for testing and validating consistent behavior of model 
code across multiple versions of simulators, Python releases, or 
other dependencies. The OMV tests a model upon each change 
to the code in the GitHub repository. This helps check that the 
model runs identically across new releases of NEST, for example. 
These developments demonstrate how a computational model 
of widespread usage and interest within the community can 
have benefits beyond the primary scientific ones. It provides a
concrete use case for testing infrastructure and platforms for
model sharing and collaborative development, and the tools and
processes developed for this purpose can be reused for many
other computational models of neuronal systems.

Disentangling model from sim ulation
Andrew Davison presented a brief history of model-sharing efforts 
in neuroscience, starting with BABEL (http://www.genesis-sim. 
org/BABEL/), the user group for the GENESIS simulator (Bower 
and Beeman 1998), and covering ModelDB (https://modeldb. 
science/), NeuroML (Gleeson et al. 2010), Neosim (Howell et al. 
2003), OSB, EBRAINS (https://search.kg.ebrains.eu)  and  GitH  ub
(https://github.com/). This long history is illustrative of the many 
technical and sociological challenges in sharing and building on 
models. Davison highlighted the progress that has been made, 
including the development and increasing uptake of declarative 
and other simulator-independent model specifications, better 
tools for running simulations and for managing code versions, 
and the spread of a culture of open science and open-source
software, and enumerated some of the remaining challenges.
As an example of how PD14 contributed to the progress already
made in model sharing, it provided a challenging use case for the
PyNN modeling language (Davison et al. 2009). Arising from the 
need in the European FACETS project for a simulator-independent 
model description language, PyNN facilitates model sharing by 
making it much easier to transfer models from one simulation 
engine to another, and to cross-verify different implementations. 
In developing the PyNN API and its implementation for different 

simulation engines, PD14 was a challenge that helped shape
the way that complex networks are represented, such that
the backend simulation engine or neuromorphic computing
system has sufficient freedom for efficient optimization and
parallelization.

Among the remaining challenges, Davison focused on a general 
lack of clear interfaces in most shared code for models of neural 
circuits. Most shared “models” are actually a mixture of model 
building code, simulation experiment code, data analysis code, 
and plotting code. This makes it more difficult to build upon or 
reuse such “models,” as only the model building code, and perhaps 
some of the simulation experiment code, is actually needed for 
reuse, and the details of how to connect the model as a component 
to other models, how to specify new stimuli/experimental proto-
cols, or how to handle and interpret output data, a re different for
each model. As an example of this, for the NEURON simulator,
files written in the NEURON Modeling Language (NMODL) are
much more widely reused than Hoc or Python files, as they
explicitly encapsulate a model component, with a well-defined
interface.

The importance of specifying clear and clean interfaces as a 
way to disentangle different components of a software system is 
commonplace in programming and software engineering. In neu-
roscience and in systems biology, the need for clear boundaries as
implemented through declarative model description formats was
recognized with the creation of NeuroML, SBML (Systems Biology
Modeling Language, Hucka et al. 2003), CellML (Cuellar et al. 2003), 
and SED-ML (Simulation Experiment Description Markup Lan-
guage, Waltemath et al. 2011) in the early 2000s. Yet the majority 
of shared models in neuroscience still lacks clean interfaces.

In presenting possible pathways toward improving this situ-
ation, Davison highlighted the education of young researchers: 
When teaching about m odeling and simulation, we should
emphasize reusability and the FAIR principles (Wilkinson et al. 
2016) and make students aware of the available tools.

Davison then presented a proposal for defining standardized 
interfaces for models. This pr oposal builds on the SciUnit frame-
work (Omar et al. 2014) and its concept of capabilities and pro-
poses to: (i) generalize the interface definitions away from use of 
the Python language, using a language-independent interface def-
inition; (ii) develop a repository or libr ary of standard capabilities,
covering different levels of model abstraction and scope.

Models written in a given language such as Python would 
expose their functionality by implementing the capability inter-
faces. For declarative model definitions such as NeuroML (https:// 
github.com/NeuroML/pyNeuroML), the capability interfaces 
would only need to be implemented once per language (eg in 
PyNeuroML) rather than once per model. Code to define simu-
lation experiments and analysis pipelines would only interact 
with a model through these interfaces, which would then make 
it much easier to define and implement new experiments. The
library of standard capabilities would also serve as a controlled
metadata vocabulary for describing models in databases.

To illustrate this proposal, Davison finished by presenting a 
worked example using the PD14 model. The current version of 
the code combines model specification and simulation experi-
ment specification, each with a separate parameter file. Several 
variants of the simulation experiment are available: For example, 
the network may either receive random spikes to represent parts 
of the brain outside the scope of the model or just correspond-
ing direct currents. To implement these variants, a number of
interfaces are needed, defined by capabilities such as “Receives-
Poisson-Spikes” or “Produces-Spikes” for each cell type or cortical
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layer in the model. This suggests that composing more complex 
capabilities fr om basic building blocks may be needed.

In conclusion, Davison proposed that, while continuing to pro-
mote the use of declarative model formats, the community of neu-
roscientists interested in sharing and building on models should 
collaborate to develop a library of standardized model inter-
faces, inspired by SciUnit, that decouple programmatic model 
definitions from the surrounding code for simulation, stimulation, 
data management, analysis, and visualization. Such interfaces 
could be implemented as lightweight wrappers around existing 
programmatic model definitions. This would increase the 
reusability of models and be part of a roadmap toward a 
component-based, constructive computational neuroscience. 
Such standard interfaces could also be used as metadata in 
model-sharing databases, increasing the FAIRness of computa-
tional models more generally. To obtain a broad uptake, this effort
would need collaborators from across a wide range of model
scopes from subcellular to whole-brain and model abstraction
levels such as detailed biophysical models, simplified spiking
models, or mean-field models.

PD14 as a neur omorphic benchmark
The relevance of PD14 as a benchmark for neuromorphic com-
puting systems became apparent in the course of the European 
BrainScaleS project (2011 to 2015). After an exploratory phase, a
range of demonstrators was selected and ultimately PD14 became
Demo 1.1 of BrainScaleS (Meier 2015). Besides the neuroscientific 
concept of the microcircuit as a fundamental building block
of cortex (see section A Digital Twin for the Cortical Microcircuit), 
the model also constitutes an elementary unit from the perspec-
tive of simulation. PD14 represents the minimal network size at 
which each neuron is supplied with the majority of the natural 
number of local synapses, and, at the same time, connection 
probability remains at the value observed in nature. From the size
of PD14 upward, the total number of synapses in a network, and
thus memory consumption, grows only linearly with network size
while connection probability declines (Lansner and Diesmann 
2012). For smaller networks, in contrast, synapse numbers and 
memory footprint typically scale quadratically. Thus, larger net-
works should be comparatively easy to simulate. A similar argu-
ment holds for the frequency of communication in a distributed 
simulation. Within the microcircuit, synaptic delays are in the 
submillisecond regime. In larger networks, the interaction of neu-
rons from more distant parts of the network has larger delays,
leaving a simulation engine room for optimization. PD14 thus
defines an important challenge for neuromorphic computing, as
once local networks of this size can be simulated, larger models
should follow with relative ease.

The first direct comparison of simulation results for PD14 
between a software sim ulation code and a neuromorphic system
(van Albada et al. 2018) introduced “time to solution” and “energy 
per synaptic event” as measures of performance. The availability 
of these two simple quantitative measures contributed to the 
success of the model as a benchmark. In addition, the study 
introduced a set of metrics for the verification of the correctness 
of the simulation and a corresponding compact graphical repre-
sentation. Subsequent publications used the same metrics and 
display the data in the same way. This approac h offers researchers
an established template for performance evaluation and reduces
the uncertainty whether a reviewer would find the measures
and representation adequate. As a side effect, results are easily
comparable across studies.

Optimizing for accuracy and efficiency
Johanna Senk started her presentation with a seemingly naive 
question that she and colleagues had asked a couple of years 
ago: If a simulation of the same neural network model is run 
both on a high-performance computing system (HPC) using NEST
and on the neuromorphic hardware system SpiNNaker, are the
results the same (Senk et al. 2017)? They took on the challenge, 
and they gradually became aware of its breadth and depth (van 
Albada et al. 2018). Due to inherent differences between simu-
lators regarding algorithms, number representations, or random 
number generators, the simulated activity data for PD14 can 
only be compared on a statistical level. To verify correctness, the 
authors therefore compared distributions of firing rates, coeffi-
cients of variation of interspike intervals, and Pearson correlation
coefficients. Although the resulting study (van Albada et al. 2018) 
eventually achieved a good match between the simulation results, 
at that time, neither technology enabled real-time simulation, and 
the required power exceeded the demands of the natural brain by 
several orders of magnitude.

The study was soon picked up by others, and subsequent 
simulations of the same model using and advancing different 
technologies, including graphics processing units (GPUs) and 
field-programmable gate arrays (FPGAs), have brought a per-
formance gain for the community (Knight and Nowotny 2018; 
Golosio et al. 2021; Knight et al. 2021; Heittmann et al. 2022; 
Golosio et al. 2023; Kauth et al. 2023a), as detailed in sec-
tions GPU-accelerated Simulations and The Making of neuroAIx. 
Within just a few years, creative algorithmic strategies have 
been developed for making the best use of the respective 
systems, and the milestone of simulation in real time has 
been reached and surpassed at a significantly reduced energy
consumption by all systems discussed in the workshop (Rhodes 
et al. 2019; Kurth et al. 2022). Senk pointed out that dur-
ing this time, researchers also advanced the understand-
ing of the mechanisms governing the model dynamics
(see section A Detailed Anatomical Model as Driv er of Analytical
Coarse-grained Descriptions) which is also informative for porting 
the model to different simulation platforms. For example, an 
analysis of the measures of network activity used for verification 
revealed the crucial role of the observation duration and
heterogeneity in the neuron input (Dasbach et al. 2021). Another 
example is a recently developed toolbox for mean-field theory 
that provides access to methods for exploring the origin of
network oscillations (Bos et al. 2016) and other analytical tools 
applicable to models such as PD14 (Layer et al. 2022). 

Senk and colleagues considered the increasingly systematic 
benchmarking endeavors around the PD14 model (Albers et al. 
2022) as a starting point for the co-development of simulation 
technologies and increasingly sophisticated neuroscientific 
models. Continuing these efforts, the performance of the 
more complex a nd demanding multi-area model is currently
being assessed following the example of the PD14 model (see
section Building Block for Models with Larger Explanatory Scope) 
(Schmidt et al. 2018b; Knight and Nowotny 2021; Tiddia et al. 2022). 

Modeling on neuromorphic hard ware
Neuromorphic systems seek to take inspiration from the brain to 
develop novel computational devices and algorithmic paradigms 
for next-generation computers. Oliver Rhodes presented one such
neuromorphic platform, the spiking neural network architecture
SpiNNaker (Furber et al. 2013), developed at the University of 
Manchester, UK. The system can be scaled to connect 1 million
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programmable ARM cores via a brain-inspired multi-cast routing 
fabric, enabling real-time simulation of large-scale spiking neural 
network models. However, evaluating the performance of a neu-
romorphic architecture such as SpiNNaker is a distinct challenge, 
as the custom hardware system lacks the well-defined computing 
stack of modern CPU/GPUs. This means optimizing performance 
for specific applications is less well understood and ultimately 
requires full-stack development, from how the problem is defined 
to how it is mapped to the underl ying computing and commu-
nication resources. Benchmark models are therefore important
research tools to help evaluate and compare the performance of
neuromorphic systems, and the neuroscience heritage and scale
of the PD14 model made it an interesting benchmark to explore
the performance of the SpiNNaker system.

The work presented by van Albada et al. (2018) demonstrated 
the first successful simulation of the PD14 model on SpiNNaker, 
representing the first time the model had been executed on 
neuromorphic hardware. Numerical accuracy was validated on 
the fixed-point arithmetic system; however, it was found that 
this required a reduced simulation timestep relative to the orig-
inal system design (0.1 ms rather than 1 ms), which led to a 
slowing down of simulations. Furthermore, avoiding spike losses 
during transient initial synchronization of the model necessitated
further slowing down so that the cortical microcircuit model
was simulated at 20× slow-down relative to real-time (0.1 ms
of simulation time simulated in 2 ms wall-clock time). In terms
of energy, SpiNNaker computed the solution using 5.9 μJ  per  
synaptic event. This figure closely matched that for an optimized
HPC-simulated version of the model (5.8 μJ per synaptic event); 
however, simulation speed was almost an order of magnitude 
lower (the NEST + HPC version of the model executed at 3× slow-
down relative to real time).

Using the lessons learned in the study above (van Albada et al. 
2018), a subsequent research project was initiated to explore opti-
mal mapping of the cortical m icrocircuit model to the SpiNNaker
platform (Rhodes et al. 2019). This initiative was further boosted 
by a newly developed data loading approach, where individual 
processing cores could now be used to generate and initialize their 
own simulation data locally (and in parallel), rather than generat-
ing all data on a remote host and loading the data to the mac hine.
This made better use of the massively parallel hardware and cut
simulation initialization times from around 8 hours (van Albada 
et al. 2018), to around 8 minutes. This, in turn, facilitated wider 
exploration of the simulated model and better understanding of 
how it was interacting with the underlying processing and routing 
hardware. It was found that the main driv er of simulation speed
was the total number of spikes received by processing cores in a
particular timestep.

Based on these insights, an alternative processing architec-
ture was developed (Rhodes et al. 2019), deploying an ensemble 
of SpiNNaker cores to work in parallel, with cores specialized 
for specific tasks: updating neurons, processing incoming spikes, 
and generating stochastic inputs. This heterogeneous ensemble 
configuration achieved the first real-time simulation of the cor-
tical microcircuit model, surpassing state-of-the-art results (at
the time) simulated on HPC systems and GPUs, and achieving
energy figures of 0.6 μJ per synaptic event, an order of magnitude 
r eduction in energy use.

The PD14 model has therefore proven a valuable development 
tool for the SpiNNaker neuromorphic platform, providing a 
validated benchmark which could be used to analyze and unlock 
the potential of the SpiNNaker architecture. This r esearch has
been further developed by the SpiNNaker team to understand
optimal application mapping to the neuromorphic system (eg

Peres and Rhodes (2022)) and has helped inform the design of 
the next-generation neuromorphic system SpiNNaker 2 (Mayr 
et al. 2019), enabling the next step in computer arc hitecture
research.

GPU-accelerated simula tions
Thomas Nowotny elaborated on the impact of PD14 on the devel-
opment of the GeNN (GPU-enhanced Neuronal Networks) soft-
ware (Yavuz et al. 2016; Knight et al. 2021). After the first com-
parative benchmarks of PD14 on the SpiNNaker neuromorphic 
hardware and the NEST simulator on HPC were published by
van Albada et al. (2018), it became clear that this model posed 
challenging problems for efficient simulations. The original SpiN-
Naker implementation took hours in initialization for minutes
of actual simulation time. Diamond et al. (2016) had recognized 
this problem earlier, and the GeNN developers were completing 
improvements in GeNN that changed how models are initialized. 
Instead of determining detailed connectivity matrices in CPU 
space and copying them to the GPU, connectivity could now be 
specified with “connectivity code snippets,” which are run in 
parallel on the GPU to initialize the model. The large n umber
of heterogeneous synapse populations of PD14 also motivated
further optimization in GeNN that now automatically merges
neuron and connection groups with the same underlying dynam-
ical model to decrease compilation overheads and increase kernel
performance.

Motivated by the results of the van Albada benchmark, Knight 
and Nowotny (2018) performed comparable benchmarks of PD14 
in GeNN on several GPU platforms. They found that at the time, 
the GeNN simulation just beat the fastest runs in NEST on the 
Jülich HPC systems. The detailed documentation, av ailability of
reference source code, and established validation methodology
of PD14 greatly aided the ease of running a fair comparison in
this work.

Since the first comparisons in 2018, subsequent benchmarks 
on improved software and hardware have seen an interesting 
neck-and-nec k race between SpiNNaker, NEST on HPC, and GeNN
on GPU (Rhodes et al. 2019; Kurth et al. 2022). 

The later publication of the multi-area model that directly
builds on PD14 (Schmidt et al. 2018a, 2018b) saw another round of 
innovation in GeNN simulation methodology. Because the synap-
tic connections were so numerous in the multi-area model that 
they could not be stored on a single GPU, James Knight redis-
covered the idea of “procedural connectivity” (Roth et al. 1997; 
Izhikevich and Edelman 2008) where synaptic connections are 
not stored at all. Instead, the connectivity code snippets normally 
used for initialization are run whenever the existence and weight
of a synapse need to be established. Combined with modern
counter-based random number generators (Salmon et al. 2011), 
this allows very efficient simulations of extremely large netw orks
in GeNN on individual GPUs (Knight and Nowotny 2021). 

Nowotny concluded his contribution by presenting mlGeNN
(https://github.com/genn-team/ml_genn), an interface that 
makes GeNN more accessible for machine learning applications
(Turner et al. 2022). This new direction will directly benefit from 
the improvements that the PD14 simulator race has motivated.

Optimizing NEST GPU
As a further development of simulation code for GPUs, Gianmarco 
Tiddia presented the GPU-based implementation of the NEST sim-
ulator and discussed how PD14 fostered its optimization. Indeed, 
the development of NEST GPU was motivated by the need to
harness the computational power of GPUs while keeping the
well-established NEST interface, enabling efficient and scalable
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large-scale neural simulations without compromising usability 
or compatibility with existing workflows. When the prototype 
library of NEST GPU was in development, SpiNNaker and GeNN 
developers had already employed PD14 for testing their simula-
tors due to its complexity, which makes it an optimal benchmark 
for identifying the bottlenecks in the simulation of networks with
natural connection density and realistic spiking activity. For this
reason, PD14 was also implemented in NEST GPU (Golosio et al. 
2021). The model is currently employed to test new versions of 
the code with an improved version of the protocol by van Albada 
et al. (2018) to verify the correctness of the simulation.

Tiddia then discussed the importance of initialization time for 
spiking network simulations, especially when performing a large 
number of simulations. The network construction algorithm of 
the prototype library, being performed on the CPU first, benefited 
from the standard C++ libraries. However, the initialization time 
was comparable to or larger than that for the CPU version of
NEST, mainly because of the costly copying of connections from
random access memory (RAM) to GPU memory. A novel algorithm
proposed by Golosio et al. (2023) enabled the initialization of the 
simulator to be performed at runtime directly on the GPU, with 
an improvement on the order of 100 times with respect to the 
algorithm previously implemented. Also in this case, the model 
chosen for evaluating the performance of the novel initialization 
algorithm was PD14, which was also employed for validating the 
results of the simulator. NEST GPU is currently able to initialize
at runtime the full-scale PD14 model in about 0.5 s on the data
center GPU NVIDIA A100, with similar results achieved with the
consumer GPU NVIDIA RTX 4090.

Tiddia concluded his presentation by showing the results 
achieved by NEST GPU i n the simulation of the multi-area model
by Schmidt et al. (2018b), which employs PD14 as a building 
block template (see section Building Block for Models with Larger
Explanatory Scope). In this case, because of the model size, a 
multi-GPU system is required to perform the simulation using 
NEST GPU. The GPU v ersion of NEST outperforms the CPU version
by a factor of three in terms of runtime (Tiddia et al. 2022), even 
though both use the message-passing interface MPI (Message 
Passing Interface Forum 2009) for the communication between 
compute nodes. One reason is the mapping of cortical areas to 
individual GPUs, thus decreasing the n umber of spikes that need
to be delivered to neurons on other GPUs.

The making of neur oAIx

Tobias Gemmeke presented the development of the neuroAIx 

FPGA cluster, a platform for accelerating large-scale neuroscience 
simulations. The primary driver was a discussion with computa-
tional neuroscientists that expressed their need for simulations 
running faster than biological real-time to enable the analysis of 
long-term plasticity effects and broad parameter sear ch. Addi-
tionally, core requirements for a dedicated neuroscience simu-
lation platform in a research context were identified: flexibility,
observability, scalability, and replicability (Kauth et al. 2023a). 
With these goals in mind, Kauth et al. (2020) explored in initial 
studies various existing communication schemes alongside novel 
concepts. To support the exploration with quantitati ve data, the
neuroAIx framework was created (Kauth et al. 2023a). It consists 
of three major pillars: (i) static simulation, ie statistical spike 
generation for fast system exploration, (ii) dynamic simulation, 
ie system behavior emulation for analyzing time-varying effects 
like increased network traffic on shared links, and (iii) a hardware 
emulator based on an FPGA cluster—actual neuronal compu-
tations for benchmarking, empirical fitting of the model, and 

refinement of the simulations . The emerging novel algorithms for
communication, synchronization, and memory access, coupled
with an efficient implementation of neuron models, resulted in
the disruptive improvement of the neuroAIx FPGA cluster (Kauth 
et al. 2023b). 

neuroAIx consists of 35 FPGAs, interconnected via high-speed 
small form-factor pluggable (SFP) and serialized AT attachment 
(SATA) links. The network topology and underlying routing algo-
rithms were specifically developed for simulating biological neu-
ral networks with realistic connectomes. PD14 was a major driver 
behind this development for two reasons. Firstly, it exhibits real-
istic firing rate statistics at scale, thus imposing proper require-
ments on a simulator. Secondly, its clear def inition, open-source
implementation, and role in rich, state-of-the-art research make
it a strong benchmark for comparing various solutions. It was
demonstrated that neuroAIx can simulate PD14 20 times faster
than real-time—faster and more energy-efficient than any other
solution so far (Kauth et al. 2023a). The results were verified 
against the PyNN implementation of PD14 and showed full cor-
respondence, indicating the suitability of neuroAIx as a viable
neuroscience simulation platform.

After this successful proof-of-concept study, the development 
of a second-generation cluster neuroAIx 2.0 was initiated. Based 
on more powerful modern FPGAs, this will not only allow larger 
networks at higher acceleration. Its release will also incorpo-
rate support for (three-factor) plasticity rules and a user-friendly 
cloud interface with NEST/NESTML integration. This will open 
up neuroAIx to the neuroscience community, encouraging and
supporting research on larger and more realistic models than
ever before, for instance scaling PD14 up to multiple areas in the
neocortex.

Discussion 
In the decade since the publication of the PD14 microcircuit 
model, neuroscience has addressed its software crisis (Aimone 
et al. 2023). Techniques for reliable software development have 
been developed and are now in widespread use. Recently, research 
software engineering (RSE) has emerged as a field (Felderer et al. 
2025) and neuroscientists actively contribute to this endeavor. 
It has also become apparent that software has a much longer 
life cycle than hardware, which is typically replaced every 5 
years. Some neuroscience simulation codes, including NEURON 
and NEST, have already been with us for some 30 years. This 
means that relevant scientific software needs to be operated and
maintained as scientific infrastructure. Unfortunately, funding
bodies have not yet fully realized this (Hocquet et al. 2024). 

During the European Human Brain Project (HBP), participating 
scientists have developed a deeper appreciation of the formal sep-
aration betw een a particular neuroscientific model and a generic
simulation engine (Einevoll et al. 2019): Simulation engines can be 
operated as an infrastructure and continuously optimized, while 
many network models can be explored with the same engine. As 
exemplified by PD14, neuronal network models can now remain 
relevant for more than a decade. At the same time, models are
becoming so complex that they can no longer be expressed in a
few dozen lines of code, see for example the multi-scale model of
Schmidt et al. (2018a). Therefore, not only simulation engines but 
also brain models have today become scientific infrastructure.

Open repositories for models such as OSB, ModelDB, or the 
EBRAINS Knowledge Graph provide crucial infrastructure for 
sharing models and thus for the establishment of models as
scientific infrastructure, while simulator-independent model
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specification languages such as PyNN, SONATA (Dai et al. 2020), 
or NeuroML support the separation of the model from the 
simulation engine. Just like simulation engines, these models 
need to be maintained in the long term, providing support for 
new users, ensuring efficient execution on evolving simulation 
software and hardware, and integration of new scientific insights. 
We believe that the computational neuroscience community 
will increasingly require and develop complex, shared models
as research platforms. Solving the challenge of providing and
funding maintenance for brain models and simulation machines
will therefore be critical to sustained progress in computational
neuroscience.

Experimental techniques have advanced tremendously since 
work on PD14 began and the resulting data are incr easingly stan-
dardized (eg through Neurodata without Borders (https://nwb. 
org)) and shared via repositories such as the Distributed Archives 
for Neurophysiology Data Integration (DANDI, https://about. 
dandiarchive.org) and the EBRAINS Knowledge Graph (https:// 
search.kg.ebrains.eu). Three-dimensional electron microscopy of 
brain tissue provides detailed information about the structure
of the neuronal network (Arkhipov et al. 2025; Bae et al. 2025). 
This significantly reduces the need to integrate data obtained 
by widel y differing methods to construct models such as PD14.
Indeed, Kurth et al. (2025) recently tested h ypotheses that
Potjans and Diesmann (2014) had to make to enable data bridging 
against explicit data from the MICrONS project (Ding et al. 2025). 
Electrophysiology with hundreds of electrodes, optophysiology, 
as well as layer-resolved magnetic resonance imaging further 
constrain the interaction between cell types and areas. In light 
of these developments, we are optimistic that larger models with
greater explanatory scope can be constructed.

Critique of PD14 has focused on two points: incorrect network 
dynamics and lack of function. In terms of detailed network 
dynamics, researchers noticed early on that PD14 exhibits much 
less power at low frequencies than observed in the brain and that 
PD14 may be less sensitive in its response to single spikes than 
actual brain networks. Also, some functional aspects seem to rely 
on the interplay of different inhibitory cell types, while the model 
collapses them to a single type. Models building on PD14 dis-
cussed here show that some of these limitations indeed disappear
in larger structures. Research addressing observed differences
between PD14 and actual brain dynamics can thus elucidate
which aspects of a network are essential to explain its dynamics.

Concerning the perceived lack of function, PD14 was intention-
ally created as a generic model based on detailed anatomical data 
to complement the large number of network models engineered 
to implement specific functions. PD14 thus rather describes the 
ground state of dynamics and the response to perturbations than 
some concrete information processing step in the brain. The re-
use of PD14 for a model of attention presented above shows that 
a general model suc h as PD14 can provide a useful starting point
for modeling of brain function. An important next stage in brain
modeling will be to expand models to cover the spatially organized
representation of information in the brain and to close the major
brain-scale functional circuits.

Recent advances have led to neuronal network models with 
internal structure validated on multiple levels against data sets 
such as MICrONS and an increasing ability to exhibit aspects of
brain function. Such models bring us steadily closer to creating
digital twins of brain components (Amunts et al. 2024). The term 
describes a virtual representation of a complex physical object 
such as a spacecraft or a production plant. The idea is that 
the digital twin captures physical constraints in sufficient detail 
that modifications can be planned and their consequences be 

observed before the physical object needs to be touched. Today,
models based on artificial intelligence can capture structural and
response properties of complex brain circuits from large data and
can thus predict the outcome of new experiments (Wang et al. 
2025). However, to find mechanistic explanations of brain func-
tion and thus deepen our scientific understanding of the brain, 
digital twins need to represent the anatomical and physiological 
constraints of the brain on multiple levels. Thus, the combina-
tion of artificial intelligence techniques a nd novel experimental
techniques will enable the community to advance the fruitful
interplay between top–down and down bottom–up modeling to a
new level.

The largest obstacle to the widespread adoption of large brain 
models as research infrastructure may be educational and social. 
Many publications in computational neuroscience are still based 
on ad hoc models of a particular brain function without embed-
ding in the larger tissue and not infrequently implemented from
scratch in general-purpose programming languages (Senk et al. 
2022), hampering model re-use. Indeed, some colleagues express 
an explicit preference for models they can simulate on their lap-
tops. While small models have provided important insights, their 
explanatory scope is limited, and computational neuroscience 
stands to benefit from taking the step from individual lab bench 
to large-scale infrastructure. Several participants expressed the 
view that the international advanced courses in computational 
neuroscience have educated a new generation of researchers who
use existing models as building blocks and skillfully use existing
digital tools to address challenging questions. Installation-free
solutions for the exploration of complex models are also far more
powerful today than a decade ago (Senk et al. 2017). Today, among 
others, OSB and the EBRAINS Research Infrastructure provide 
powerful platforms for work with complex models in teaching 
and research. The situation is reversing: The desire to have full 
independence using the personal laptop only is for some young 
researchers even replaced by a feeling of awkwardness if software 
needs to be installed. Simulations small or large are regularly d one
in the cloud without any installation on the personal laptop or
tablet using the same model description language. This removes
technical and psychological barriers in the use of larger models.

We believe that computational neuroscience may be at a new 
dawn, the sometimes painful transition from a science where dis-
coveries are made by individuals to a science where questions of
greater complexity can be addressed by large-scale instruments,
at the price of giving up some individuality (Galison 1997). 
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