001     1046797
005     20251202203134.0
024 7 _ |a 10.1109/CVPRW67362.2025.00225
|2 doi
037 _ _ |a FZJ-2025-03964
100 1 _ |a Blumenstiel, Benedikt
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
|c Nashville
|d 2025-06-11 - 2025-06-12
|w TN
245 _ _ |a Terramesh: A Planetary Mosaic of Multimodal Earth Observation Data
260 _ _ |c 2025
|b IEEE
300 _ _ |a n/a
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1764676848_15938
|2 PUB:(DE-HGF)
520 _ _ |a Large-scale foundation models in Earth Observation can learn versatile, label-efficient representations by leveraging massive amounts of unlabeled data. However, existing public datasets are often limited in scale, geographic coverage, or sensor variety. We introduce TerraMesh, a new globally diverse, multimodal dataset combining optical, synthetic aperture radar, elevation, and land-cover modalities in an Analysis-Ready Data format. TerraMesh includes over 9 million samples with eight spatiotemporal aligned modalities, enabling large-scale pre-training and fostering robust cross-modal correlation learning. The dataset spans nearly all terrestrial ecosystems and is stored with Zarr to facilitate efficient, HPC-friendly loading at scale. We provide detailed data processing steps, comprehensive statistics, and empirical evidence demonstrating improved model performance when pre-trained on TerraMesh. The dataset will be made publicly available with a permissive license.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a AI Foundation - AI Foundation Models for EO (AIFM4EO, FAST-EO) (D/564/67338791)
|0 G:(ESA-Grant)D/564/67338791
|c D/564/67338791
|x 1
588 _ _ |a Dataset connected to CrossRef Conference
700 1 _ |a Fraccaro, Paolo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Marsocci, Valerio
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jakubik, Johannes
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Maurogiovanni, Stefano
|0 P:(DE-Juel1)204210
|b 4
|u fzj
700 1 _ |a Czerkawski, Mikolaj
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 6
|u fzj
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 7
|u fzj
700 1 _ |a Brunschwiler, Thomas
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Bernabe-Moreno, Juan
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Longépé, Nicolas
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1109/CVPRW67362.2025.00225
856 4 _ |u http://doi.org/10.1109/CVPRW67362.2025.00225
856 4 _ |u https://juser.fz-juelich.de/record/1046797/files/_CVPR_EV__TerraMesh.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1046797
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)204210
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)171343
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21