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A B S T R A C T

This study employs the global chemistry–climate model EMAC, combined with emission adjustment factors 
(CONFORM), to evaluate the global impacts of the 2020 COVID-19 lockdowns on secondary air pollutants. 
Unlike earlier studies limited to short periods or specific regions, this work captures seasonal, spatial, and sec
toral variability in emissions and pollutant formation. It examines both primary pollutants (e.g., NOx, SO2) and 
secondary pollutants such as ozone and PM2.5 components. Significant NOx reductions were simulated, with peak 
decreases of 31 % in Europe and 25 % in Eastern Asia during lockdowns. SO2 dropped by up to 20 % in Southern 
Asia, while Eastern Asia saw a 14 % post-lockdown rebound due to increased industrial activity. Ozone responses 
varied regionally, with increases of up to 4 % in urban areas in Eastern Asia due to reduced titration, while 
Southern Asia saw decreases up to 1.4 %. Aerosol concentrations followed similar regional trends. Sulfate 
declined by 17 % in Southern Asia while nitrate and ammonium dropped by 27 % and 33 % in Europe, 
respectively. Global primary organic aerosol decreased by 4 %, with South Asia showing an 8 % reduction. 
Secondary organic aerosol fell by 4 %, with the largest drop (8 %) in Latin America and the Caribbean. Overall, 
PM2.5 over land declined by 2 %, with Europe showing the largest regional decrease (6 %). These results 
highlight the substantial but regionally varied effects of pandemic-related emission changes. However, even 
substantial short-term reductions had limited impact on PM2.5 levels, underscoring the need for sustained, large- 
scale emission cuts to meet WHO air quality guidelines.

1. Introduction

The COVID-19 pandemic led to unprecedented restrictions on human 
activities, especially travel and commuting, resulting in rapid reductions 
in anthropogenic pollutant emissions. Most countries imposed social 
distancing measures, which affected not only the transportation sector 
but also many businesses, which were temporarily out of operation, 
while industry and manufacturing sectors had the minimum workload 
(Skiriene and Stasiskiene, 2021). In contrast, residential activity and the 
use of biomass and coal for heating and cooking increased (Kong et al., 
2023; Tian et al., 2021). Restrictions in the transport sector during the 
shutdowns affected NOx emissions (Guevara et al., 2022), while changes 
in the power and industrial sectors mainly affected SO2 emissions 
(Amritha et al., 2024). Therefore, the impacts on air quality may differ 
between urban and suburban areas (Wang et al., 2021). These global 
changes provide an opportunity to study how atmospheric composition 

responds to these pandemic-driven changes in emissions, and to 
examine their impact on the formation of secondary air pollutants such 
as ozone (O3) and fine particulate matter (PM2.5).

Several studies have examined the influence of COVID-19 lockdowns 
on air pollutant emissions and air quality in North America (Goldberg 
et al., 2020; Jia et al., 2020; Forster et al., 2020), Europe (Petetin et al., 
2020; Ropkins and Tate, 2021; Cameletti, 1994; Giani et al., 2020), and 
Asia (Zheng et al., 2020; Weber et al., 2020; Tian et al., 2021; Kong et al., 
2023; Ren et al., 2021; Kang et al., 2021; Li et al., 2022; Le et al., 2020; 
Gao et al., 2021; Wang et al., 2021). Global-scale assessments have also 
conducted (Doumbia et al., 2021; Gaubert et al., 2021; Gkatzelis et al., 
2021b; Yang et al., 2020; Fu et al., 2020; Smith et al., 2022; Adam et al., 
2021; Sanap, 1994; Cao et al., 2021; Tang et al., 2021), many of which 
report a global drop in CO2 emissions of about 6 %, and decreases in NOx 
emissions ranging from 11 % to 29 % (Guevara et al., 2022; Camar
go-Caicedo et al., 2021; Wang et al., 2024). Forster et al. (2020) and 
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Hanaoka and Masui (2020) reported a 30 % decline in global NOx 
emissions in April 2020. Meanwhile, Amritha et al. (2024) reported a 
global average SO2 reduction of 2 %, based on satellite observations. 
These studies confirm widespread changes in atmospheric composition 
due to reduced transportation and industrial activity, with strong 
regional variability. Satellite-based retrievals further support these 
trends, showing declines in tropospheric NO2 and SO2 columns over key 
regions. Sekiya et al. (2023) found reductions of 19–25 % for NO2 and 
14–20 % for SO2 over North America, Europe, and East Asia in April 
2020. Local studies in China and India also indicated drops of up to 40 % 
in NO2 concentrations (Zheng et al., 2020; Xia et al., 2021). However, 
such declines were often short-lived, with emissions increasing again 
within a few months (Liu et al., 2020; Dong et al., 2022).

A large number of studies have also investigated the influence on 
atmospheric aerosol concentrations (Rodriguez-Urrego and 
Rodriguez-Urrego, 2020; Sekiya et al., 2023; Gkatzelis et al., 2021b; 
Hammer et al., 2021; Venter et al., 2020; Fu et al., 2020; Zheng et al., 
2021; Tian et al., 2021; Le et al., 2020; Sanap, 1994; Liu et al., 2021a; 
Collivignarelli et al., 2020; Stratoulias and Nuthammachot, 2020). 
Global PM2.5 levels fell by approximately 31 % during the lockdowns 
(Venter et al., 2020), while PM10 decreased by 8–40 % depending on 
location (Gkatzelis et al., 2021b). Regionally, China and India saw 
substantial PM2.5 reductions of 24 % and up to 37 %, respectively (Zheng 
et al., 2021; Kant et al., 2020). Satellite data confirmed sulfate and ni
trate aerosol reductions of 8–21 % in polluted regions (Sekiya et al., 
2023), though in some areas, such as Rome, PM2.5 increased due to 
sustained local emissions (Fu et al., 2020). Wildfires also contributed to 
elevated aerosol levels in South America, Mexico, and parts of Africa 
(Sanap, 1994).

Ozone responses were more complex. A significant number of studies 
have investigated the effects of COVID-19 lockdowns on O3 (Gkatzelis 
et al., 2021b; Le et al., 2020; Fu et al., 2020; Liu et al., 2021a; Venter 
et al., 2020; Adam et al., 2021; Gao et al., 2021; Patel et al., 2020; 
Collivignarelli et al., 2020; Lian et al., 2020; Sharma et al., 2020; Sicard 
et al., 2020). While NOx reductions in NOx-saturated urban areas led to 
reduced O3 titration and consequent increases in O3 up to 14 ppb (Le 
et al., 2020; Tang et al., 2021), some NOx-limited regions experienced 
modest decreases in O3 levels. Liu et al. (2021a) found that global O3 Air 
Quality Index (AQI) rose by 10–27 % across many cities, while Venter 
et al. (2020) observed a 4 % average increase in 34 countries. These 
shifts were closely tied to VOC/NOx sensitivity and seasonal photo
chemical regimes, with implications for secondary aerosol formation 
(Adam et al., 2021).

Finally, a range of chemical transport and chemistry–climate models 
have simulated the atmospheric effects of the COVID-19 lockdowns. 
Giani et al. (2020), using WRF-Chem, found a 30 % reduction in PM2.5 
over China and a 17 % reduction over Europe in early 2020. Gaubert 
et al. (2021), employing CESM, observed wintertime increases in ozone 
across northern China, Europe, and the United States, even amid NOx 
and VOC reductions, while O3 decreased in rural NOx-limited regions. 
Additional studies using the CAM-chem model, including Ortega et al. 
(2023), reported a mean decline of 9 % ± 5 % in tropospheric column O3 
between March and May 2020, based on observational sites worldwide. 
Similarly, Bouarar et al. (2021), using the CAM-chem model, found that 
free tropospheric O3 during spring and summer was 5–15 % lower than 
climatological norms, while in the Southern Hemisphere, 
COVID-19-related O3 decreases of 4–6 % were offset by simultaneous O3 
increases from other atmospheric influences. Other regional-scale 
studies using models such as WRF, CHIMERE, COSMO-ART, and HYS
PLIT (e.g., Le et al., 2020; Huang et al., 2021; Casallas et al., 2024) also 
captured region-specific patterns in air quality changes. These results 
emphasize that model outcomes are highly sensitive to the choice of 
emission inventories, chemistry schemes, meteorological inputs, and 
resolution, all of which contribute to variability in simulated air quality 
responses.

While most studies have focused on the first six months of 2020 to 

assess the impact of COVID-19 lockdowns on air quality, a compre
hensive year analysis is crucial to fully understand the long-term effects. 
Many existing studies have also been limited to specific regions or pe
riods, often overlooking the seasonal, sectoral, and spatial emission 
variations and their impact on secondary pollutants. To address this gap, 
the present study employs a global modeling approach that covers the 
entire year of 2020, allowing for a complete evaluation of the pan
demic’s effects on global air quality and capturing the nuanced changes 
in emissions and pollutant formation across different regions and sea
sons. Between 2019 and 2020, the changes in emissions in residential 
combustion, public energy, industry, and shipping sectors were also 
influenced by factors unrelated to COVID-19, such as meteorological 
changes (in particular a warmer winter) (Guevara et al., 2022). In this 
work, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is 
used for the first time to quantify the impact of national lockdowns for 
the control of COVID-19 on regional and global air quality during the 
year 2020, focusing on both primary and secondary pollutants. The 
Copernicus Atmosphere Monitoring Service (CAMS) emission inventory 
has been modified based on the gridded adjustment factors of the 
CONFORM (COvid-19 adjustmeNt Factors fOR eMissions) dataset 
(Doumbia et al., 2021). These adjustment factors vary temporarily and 
are source specific (i.e., transportation, power generation, industry, and 
residential) to account for changes in emissions imposed by each 
country during the pandemic. This modeling framework allows us to 
isolate and evaluate the atmospheric impacts of lockdown-related 
emission changes with high spatial and temporal resolution, offering 
insights relevant for both evaluating short-term effects on air quality but 
also for assessing long-term strategies aimed at reducing pollution and 
mitigating climate change.

2. Emissions description

2.1. Emissions inventory

In the current study, the Copernicus Atmosphere Monitoring Service 
(CAMS v4.2) anthropogenic emissions inventory was used to simulate a 
business-as-usual scenario (BAU) if no lockdowns enforced during the 
year 2020. CAMS includes 36 chemical species emitted by 20 sectors 
(Granier et al., 2019) with a monthly temporal coverage and a global 
spatial coverage of 0.1 × 0.1◦ grid resolution. The global emission fluxes 
provided by CAMS for the year 2020 are 71.7 Tg yr− 1 NOx, 66.7 Tg yr− 1 

NH3, 98.3 Tg yr− 1 SO2, 4.7 Tg yr− 1 BC, and 11.7 Tg yr− 1 OC. -. Emissions 
from open biomass burning were obtained from the GFEDv3.1 database 
(Van Der Werf et al., 2010). Organic compound (OC) emissions released 
by the combustion of fossil fuels, biofuels, and biomass burning (i.e., in 
savannah and forest fires) are introduced in the model as low volatility 
(LVOC; C* < 0.32 μg m− 3), semivolatile (SVOC; 0.32 μg m− 3 <C* < 320 
μg m− 3), and intermediate volatility (IVOC; 320 μg m− 3 <C* < 3.2 ×
106 μg m− 3) organic compounds by using the emission factors of 
Tsimpidi et al. (2016).

Sea salt mineral dust, and volcanic SO2 emissions are based on the 
AEROCOM dataset (Dentener et al., 2006). Sea salt consists of 30.6 % 
Na+, 3.7 % Mg2+, 1.2 % Ca2+, 1.1 % K+ and 55 % Cl. Mineral cations 
such as Ca2+, Mg2+, K+, and Na+ are considered as the chemically active 
components of the emitted bulk dust (Karydis et al., 2016; Klingmuller 
et al., 2018). Biogenic emissions of NO from soils are calculated online 
(Yienger and Levy, 1995) while NOx from lighting is also calculated 
online (Grewe et al., 2001). Emissions of oceanic dimethyl sulfide (DMS) 
are calculated online by the AIRSEA submodel (Pozzer et al., 2006). The 
GEIA data set has been used to provide oceanic ammonia emissions and 
emissions from soils under natural vegetation (Bouwman et al., 1997).

2.2. Emissions Adjustment factors

To simulate the impact of reduced atmospheric emissions on regional 
and global air quality during the COVID-19 pandemic, the CONFORM 
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adjustment factors (Doumbia et al., 2021) were applied to the CAMS 
v4.2 anthropogenic emissions inventory. The CONFORM dataset pro
vides gridded adjustment factors for the transportation, power genera
tion, industry, ships, and residential public and commercial sectors at 
the same spatial and temporal resolution as the CAMS v4.2 global 
anthropogenic emission inventory, on a daily, monthly, and annual 
basis, starting in January 2020. The averaged adjustment factors we 
used in our simulations are derived based on activity data from each 
country and continent, i.e., mobility trends and traffic congestion index 
for road transportation, container ship port calls for shipping, air traffic 
data for aviation, coal consumption and crude steel production for in
dustry, total electricity load for power generation, and mobility trends 
for residential and commercial sectors (Doumbia et al., 2021).

To determine the influence of each most affected sector based on the 
CONFORM dataset for NOx, SO2, BC, OC, CO and anthropogenic VOCs 
(aVOCs) emissions, we calculated the global average emission share of 
each of the 6 pollutants from each sector. NOx is mainly emitted by the 
energy (32 %), transportation (27 %), and industry (22 %) sectors, while 
SO2 is mainly emitted by energy (43 %) and industry (40 %). Both BC 
and CO are mainly emitted by industry (38 % and 25 %, respectively) 
and the residential/commercial sector (~40 % for both). For OC, the 
residential/commercial sector is the main emitter (74 %). In the case of 
aVOCs, the industry and transportation sectors are the main emitters 

(~40 % for both). Considering these percentages, it is obvious that a 
small change in sectors such as industry and energy can significantly 
affect the emissions of certain air pollutants.

Fig. 1 depicts the timeseries of the adjustment factors for the year 
2020, expressed as a percentage change in emissions from each sector 
following Doumbia et al. (2021). The results in Fig. S1 include the highly 
populated and industrialized regions of Eastern Asia, Europe, North 
America, and South Asia, where activity data are more accurate and 
largely available compared to other continents. During each COVID-19 
lockdown (in February for Eastern Asia and in April for the remaining 
areas), the industrial and road transportation sectors were the most 
affected, in some cases with reductions of 40–55 % (Fig. S1 and S2). In 
contrast, the other sectors experienced a maximum reduction of around 
10 %, especially in the first six months of 2020. On the other hand, in the 
case of Eastern Asia, the industry sector seems to have experienced a 
significant increase after April, in some cases reaching values of more 
than +20 %. The road transportation and shipping sectors in Eastern 
Asia show a slight increase in some cases after the month of July, with 
the shipping sector also showing an increase between February and 
April (Fig. 1 and S1). The energy and industry sectors also show 
increased emissions in Latin America in the second half of 2020 (Fig. S1 
and S2). For South Asia, the energy sector increases in November 
(Fig. S1). Finally, the impact of global travel restrictions on the aviation 

Fig. 1. Monthly average adjustment factors used to estimate emission changes during the COVID-19 pandemic in the regions of (a) North America, (b) Europe, (c) 
Eastern Asia, and (d) South Asia. The sectors affected include Shipping, Residential and Public Commercial, Industry, Road Transport, and Energy.
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sector is evident worldwide, with most regions experiencing an average 
annual reduction of around 50 % (Fig. S1). In February, aviation was 
drastically reduced in the Eastern Asia region (Fig. 1 and S1) due to the 
first outbreak of the coronavirus, while in April regions such as North 
America and Europe began to impose travel restrictions and emissions 
from aviation were reduced by more than 80 %. After the spring months, 
the reduction slowed as coronavirus quarantine measures began to be 
relaxed.

2.3. Changes in pollutant emissions during the COVID-19 pandemic

Fig. 2 shows the monthly average percentage change (%) in emis
sions of the major pollutants between the COVID-19 pandemic and BAU 
scenarios for the regions of Eastern Asia, Europe, South Asia, and North 
America. Table 1 shows the corresponding annual average emissions 
changes for ten regions of the world considered. In Eastern Asia, emis
sions of all pollutants were reduced by more than 20 % in February, 
especially aVOCs (about 25 %; Fig. 2c) and NOx (about 20 %; Fig. 2c) 
due to quarantine enforcement and drastic reductions in road traffic. 
However, after April, emissions increased sharply, leading to increases 
of up to 10 % compared to the BAU scenario, especially for SO2, due to 
the increased activity of the industrial sector (Fig. 1). Overall, annual 
average pollutant emissions have increased compared to the BAU sce
nario, with the largest increase for aVOCs (5.4 %) and the smallest for 
NOx (0.2 %). The largest decrease was for CO (1.6 %) followed by OC 
(1.4 %) as shown in Fig. 2c. These findings are in accordance with 
previous results reported by Liu et al. (2021b), Xia et al. (2021), and 
Zheng et al. (2021), which observed significant reductions in SO2 and 
CO emissions in China during quarantine, followed by a rebound in 
pollutant emissions due to increased industrial activity and energy use, 

as highlighted by Dong et al. (2022). In contrast, pollutant emissions 
over Europe, North America, and South Asia decrease after March, with 
the largest reductions occurring in April (about 30 %; Fig. 2). Over South 
Asia, pollutant emissions gradually increase after April until they reach 
BAU levels in December (Fig. 2d). Over Europe (Fig. 2b) and North 
America (Fig. 2a), pollutant emissions start to increase after April 
reaching a minimum of about 10 % reductions compared to BAU levels 
during the summer months, after which they decrease again following 
the second wave of the coronavirus and the new closures. This inter
annual variation in pollutant emissions has been reported by other 
studies, showing similar seasonal trends influenced by pandemic re
strictions and subsequent relaxations (Guevara et al., 2022).

North America shows the highest annual average reductions for 
aVOCs and CO (~12 % on average) driven by 20–40 % reductions in 

Fig. 2. Percentage change in NOx, VOC, BC, CO, SO2, and OC emissions after applying the COVID-19 adjustment factors in the CAMS v4.2 global anthropogenic 
emissions inventory over the areas of North America, Europe, Eastern Asia, and South Asia in 2020.

Table 1 
Percentage annual difference (%) of pollutant emissions between COVID-19 and 
BAU scenario. A negative result indicates a decrease during the corona period.

NOx aVOCs BC CO SO2 OC

North America − 8.0 − 13.2 − 9.3 − 11.8 − 9.5 − 8.4
Europe − 12.5 − 9.5 − 11.4 − 8.2 − 8.2 − 7.2
Eastern Asia 0.2 5.4 1.7 − 1.6 2.7 − 1.4
Southern Asia − 10.3 − 10.9 − 9.6 − 10.0 − 7.5 − 6.5
Eurasia − 5.2 − 9.5 − 7.3 − 6.4 − 7.8 − 6.0
South-East Asia and 

Developing Pacific
− 7.8 − 7.0 − 5.7 − 7.3 − 6.4 − 2.4

Asia-Pacific Developed − 11.5 − 13.2 − 12.6 − 10.9 − 8.6 − 9.0
Middle East − 13.1 − 13.7 − 13.8 − 13.9 − 6.0 − 12.9
Africa − 5.0 − 5.0 − 3.9 − 3.6 − 3.3 − 2.6
Latin America & 

Caribbean
− 16.9 − 22.4 − 15.8 − 17.8 − 9.0 − 8.8
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emissions from the industrial sector (Fig. 1 and S2). This aligns with 
reported CO declines of 5–10 % during the lockdown period (April to 
May 2020) compared to pre-lockdown levels (March 2020) in regions 
with significant human activity, including North America (Pathak et al., 
2023). On the other hand, in Europe NOx emissions are the most affected 
with annual average reductions of 12.5 % due to large reductions in 
transport emissions. Among the other regions, the largest reductions in 
pollutant emissions were observed in Latin America and the Caribbean, 
where aVOCs decreased by 22 % on annual average, while other pol
lutants decreased by 9 % (OC and SO2; Table 1) to ~17 % (NOx and CO; 
Table 1), as significant reductions in these pollutants were observed in 
large cities such as Buenos Aires, Lima, Rio de Janeiro, Sao Paolo, 
Mexico City, and Bogota (Poullain et al., 2022; Kutralam-Muniasamy 
et al., 2021; Pardo Amaya and Samuel, 2022; Rodriguez-Urrego and 
Rodriguez-Urrego, 2020) (Table 1). In the Middle East, most pollutants 
decreased by about 13 % except for SO2 (6 %; Table 1), which is 
consistent with the reduction of 4 % reported by Amritha et al. (2024). 
In the Asia-Pacific developed region, pollutant emissions decreased by 
9–13 %, while in the remaining regions (i.e., Africa, Eurasia, and 
Southeast Asia and developing Pacific), the annual average pollutant 
emission reductions are less than 10 % (Table 1) with the lowest re
ductions occurring in Africa.

3. Model description

3.1. Atmospheric chemistry model

In this study, the ECHAM5/MESSy Atmospheric Chemistry model 
(EMAC) is used, which is a global chemistry-climate model that de
scribes lower and middle atmosphere processes and their interaction 
with oceans, land, and human influences (Jöckel et al., 2005). The Eu
ropean Center Hamburg (ECHAM5) general circulation model 
(Roeckner et al., 2006) is used as the atmospheric dynamical core to 
describe the atmospheric flow. The Modular Earth Submodel System 
(MESSy2) links the core model with sub-models that simulate gas-phase 
chemistry (MECCA; Sanap, 1994), inorganic aerosol microphysics 
(GMXe; Pringle et al., 2010), organic aerosol formation and growth 
(ORACLE; Tsimpidi et al., 2014), aerosol optical properties (AEROPT; 
Lauer et al., 2007), cloud microphysics (CLOUD; Jöckel et al., 2005), dry 
deposition and sedimentation (DRYDEP, SEDI; Kerkweg et al., 2006), 
and cloud scavenging (SCAV; Tost et al., 2006). In this study, we 
employed the EMAC model at a T63L31 resolution, corresponding to a 
horizontal grid spacing of approximately 1.875◦ × 1.875◦ and 31 ver
tical levels extending up to 10 hPa (~30 km altitude). The analysis 
presented here focuses on the surface level, which in the model corre
sponds to a layer extending up to approximately 67 m above ground 
level. EMAC is applied for 2 years, covering the period 2019–2020 in the 
lower troposphere, with 2019 used solely as the spin-up period. The 
model simulations are nudged towards meteorology using ERA5 data 
(Hersbach et al., 2020), ensuring meteorological consistency across both 
scenarios and isolating the impact of emission changes.

3.2. Organic aerosol formation

The ORACLE module (Tsimpidi et al., 2014, 2024) is employed to 
simulate the organic aerosol composition and evolution in the atmo
sphere based on the volatility basis set framework (VBS). It calculates 
the contribution of low volatility (LVOCs), semivolatile (SVOCs), inter
mediate volatility (IVOCs), and volatile organic compounds (VOCs) to 
the formation of POA and SOA by considering their gas-phase photo
chemical reactions that change their volatility and assuming bulk 
equilibrium between the gas and particulate phases. Rather than 
tracking individual compounds, ORACLE groups organics into volatility 
bins defined by their effective saturation concentration (C*). LVOCs (C* 
< 0.32 μg/m3) are extremely low-volatility compounds such as large 
multifunctional oxidation products. SVOCs (0.32 < C* < 320 μg/m3) 

include compounds like long-chain alkanes and oxygenated aromatics. 
IVOCs (320 < C* < 3.2 × 106 μg/m3) typically include branched al
kanes, cycloalkanes, and polycyclic aromatics. VOCs (C* > 0.32 × 106 

μg/m3) are represented by isoprene, terpenes, sesquiterpenes, as well as 
medium-chain alkanes, olefins, and aromatics.

POA are formed from the phase partitioning of LVOC and SVOC 
emissions from open biomass burning and fuel combustion sources. Gas- 
phase photochemical reactions that modify the volatility of the organics 
are considered, and the oxidation products of each group of precursors 
(SVOCs, IVOCs, and VOCs) can partition to the aerosol phase by 
assuming bulk equilibrium forming SOA. The volatilities of SVOCs and 
IVOCs are reduced by a factor of 102 because of the OH reaction with a 
rate constant of 2x10− 11 cm3 molec− 1 s− 1 and a 15 % increase in mass to 
account for two added oxygen atoms (Tsimpidi et al., 2018). LVOCs are 
not allowed to participate in photochemical reactions since they are 
already in the lowest volatility category. The VOC oxidation results in 
products distributed in four volatility categories with effective satura
tion concentrations of 10◦, 101, 102, and 103 μg m− 3. These products are 
categorized as (i) anthropogenic and (ii) biogenic SOA. More details 
about the ORACLE module and the different aerosol types and chemical 
processes simulated by ORACLE in this study can be found in Tsimpidi 
et al. (2016).

3.3. Inorganic aerosol thermodynamics

The GMXe submodel simulates both the thermodynamic behavior of 
inorganic aerosols and their microphysical evolution, as described by 
Pringle et al. (2010). It is based on an enhanced version of the M7 
aerosol scheme (Vignati et al., 2004), which represents aerosols using 
seven interacting lognormal modes, four hydrophilic and three hydro
phobic. Within each mode, aerosols are assumed to be internally mixed 
(i.e., of uniform composition), but differences in composition are 
allowed between modes. The hydrophilic modes span the full-size range 
of atmospheric particles, covering nucleation, Aitken, accumulation, 
and coarse modes, while the hydrophobic modes represent similar size 
classes excluding nucleation. Each aerosol mode is characterized by its 
number concentration, mean particle radius, and geometric standard 
deviation. While the size boundaries of the modes are fixed, their mean 
radius can vary (Pringle et al., 2010).

The gas–aerosol partitioning of inorganic compounds is calculated 
using the ISORROPIA-II thermodynamic model (Fountoukis and Nenes, 
2007), which accounts for the equilibrium between gas, aerosol, and 
solid phases. Aerosols may exist in either a stable state, where salts 
precipitate upon saturation, or a metastable state in which aerosols are 
always aqueous, and salt precipitation is not considered. While the two 
assumptions can lead to differences under low relative humidity, 
global-scale comparisons have shown minimal discrepancies across 
aerosol components (Karydis et al., 2021; Milousis et al., 2024). This 
study adopts the stable state configuration. To capture potential kinetic 
limitations in condensation, gas–aerosol partitioning is resolved in two 
steps. First, the uptake of condensable gases is estimated under the 
assumption of diffusion-limited condensation (Vignati et al., 2004). 
Then, ISORROPIA-II adjusts the gas–aerosol distribution assuming 
instantaneous thermodynamic equilibrium (Karydis et al., 2016).

3.4. Model evaluation

The EMAC model is widely used and recognized in the literature for 
its ability to accurately reproduce various atmospheric parameters, 
including organic and inorganic aerosol concentrations and composi
tions, gas-phase mixing ratios, aerosol optical depth, acid deposition, 
cloud properties, and meteorological parameters (Tsimpidi et al., 2017; 
Karydis et al., 2017; Pozzer et al., 2022; Milousis et al., 2025a). A 
comparison of the model’s performance in estimating surface mass 
concentrations of PM2.5 aerosol components is provided in the supple
mental material (Fig. S7–S10 and Table S1). This comparison utilizes 
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observations from several monitoring networks across the Northern 
Hemisphere, including East Asia (EANET, The Acid Deposition Moni
toring Network in East Asia), Europe (EMEP, European Monitoring and 
Evaluation Programme), and the USA, covering both urban (EPA-CSN, 
U.S. Environmental Protection Agency Chemical Speciation Network) 
and rural (IMPROVE, Interagency Monitoring of Protected Visual En
vironments) locations. IMPROVE primarily consists of rural background 
stations located in national parks and remote areas across the United 
States, aimed at tracking regional haze and visibility trends (Guevara 
et al., 2022). In contrast, EPA focuses on urban sites, capturing aerosol 
characteristics in more densely populated and industrialized areas (Lin 
et al., 2014). In Europe, EMEP stations include both urban and rural 
sites, though the majority used for model evaluation are in rural or 
suburban regions (Lu et al., 2024). EANET sites are predominantly rural, 
located in less industrialized areas across East and Southeast Asia to 
monitor regional background air quality and acid deposition trends 
(Zhang et al., 2020).

Sulfate aerosol concentrations are simulated with reasonable accu
racy (Fig. S7, Table S1). The model underestimates sulfate in East Asia 
(NMB = − 41 % at EANET), Europe (− 20 % at EMEP), and urban North 
America (− 28 % at EPA), but it overestimates in the rural North America 
(NMB = 94 % at IMPROVE). Nitrate aerosol is significantly over
estimated, particularly in rural locations (Fig. S8, Table S1). At 
IMPROVE sites, the model yields an NMB of +502 %, while the over
estimation is more moderate at EPA (+11 %) and EANET (+61 %). This 
bias likely reflects both known measurement uncertainties, such as 
volatilization losses of NH4NO3 from filters, and model limitations, 
including coarse grid resolution and simplified N2O5 hydrolysis pa
rameterizations (Milousis et al., 2025b). Ammonium aerosol is also 
overpredicted, with NMB values of +153 % at IMPROVE and +32 % at 
EANET (Fig. S9, Table S1), consistent with the nitrate bias and un
certainties in NH3 emissions (Wang et al., 2025). Organic aerosols (OA) 
are systematically underpredicted across all networks. The largest bias is 
seen in the EPA urban dataset (NMB = − 50 %), followed by EMEP (− 39 
%) and EANET (− 38 %). This underestimation (Fig. S10, Table S1) has 
been linked to the absence of detailed biomass burning emissions and 
associated SOA formation pathways in the model (Tsimpidi et al., 2024). 
Root Mean Square Error (RMSE) values further highlight model uncer
tainty, especially for nitrate, with RMSEs of 0.8 μg m− 3 (EPA), 2.81 μg 
m− 3 (IMPROVE), and 2.08 μg m− 3 (EANET). These elevated RMSE 
values reflect the greater variability and challenges in reproducing ni
trate dynamics, particularly in rural and colder regions (Table S1).

Overall, the model captures the spatial and temporal variability of 
inorganic aerosols relatively well, particularly sulfate. However, it ex
hibits a consistent tendency to overestimate nitrate and ammonium and 
underestimate OA, patterns consistent with previous EMAC evaluations. 
These biases are attributed to both observational artifacts and missing 
processes, such as nighttime oxidation of biomass burning emissions, 
especially over Europe (Tsimpidi et al., 2024). A more detailed 

evaluation of EMAC performance is provided in Tsimpidi et al. (2024).

4. Impact of emission changes on atmospheric trace gases 
during the COVID-19 pandemic

4.1. Nitrogen oxides

The simulated BAU global average surface concentration of NOx is 
0.3 ppb (1.1 ppb over land). Eastern and South Asia exhibit the highest 
regional annual average surface concentrations (~3 ppb), while the 
lowest levels are simulated over Eurasia (0.5 ppb). Under the CONFORM 
scenario, global average NOx concentrations decrease by 0.05 ppb (5 %; 
Fig. S3; Table 2) over land, consistent with the findings of Keller et al. 
(2021). In February, Eastern Asia experiences a significant NOx con
centration reduction of 1 ppb (25 %) (Fig. 3b and c), primarily due to 
substantial emission decreases from transportation (40 %) and industry 
(30 %) (Fig. 1 and S1), which is comparable to the 27 % decrease re
ported by Zheng et el. (2021). This represents the highest reduction of 
the year for the region, although global average reductions during 
February remain the lowest (0.08 ppb or 5 %) as emissions elsewhere are 
largely like BAU levels. By April, lockdown enforcement worldwide 
leads to the highest global average NOx concentration reduction of the 
year (0.12 ppb or 12 %), despite a rebound in Eastern Asia due to 
increased industrial production and shipping activities (Fig. S1 and S2). 
Additional factors such as elevated residential sector emissions (Venter 
et al., 2020) and shifts in transportation patterns (Chang et al., 2021) 
may have further contributed to this regional increase. Over Eastern 
Asia, NOx concentrations decline only during February and March 
before gradually rising, peaking with a 10 % increase in November 
(Fig. 3b and f), a rebound effect also noted by Niu et al. (2022) for NO2 
emissions in China. In Southern Asia, NOx concentrations slightly in
crease (3 %) in December but remain below BAU levels for most of the 
year, with a maximum reduction of 27 % in April. This is consistent with 
the findings of Gopikrishnan et al. (2022), who observed a 21–36 % 
reduction in NO2 levels across several Indian cities, followed by a sub
sequent increase in concentrations after the lockdown period. Europe 
experiences the steepest NOx concentration decline, with a 31 % 
reduction in April (Fig. 3b and d), consistent with findings by Sekiya 
et al. (2023) and Deroubaix et al. (2021). This result also closely aligns 
with the 33 % average reduction reported for Europe by Keller et al. 
(2021). On an annual average in Europe, NOx concentrations decrease 
by 10 % compared to BAU (Table 2). Significant annual reductions of 
around 10 % are also observed over Latin America, notably in major 
urban areas such as São Paulo and Mexico City, as well as in the 
Caribbean and the Middle East (Fig. 3d), whereas smaller reductions 
occur over Africa and Eurasia (3 %). North America experienced an 
annual decrease around 6 % (Table 2), with the highest reduction in 
April (14 %), particularly in the northeastern US (Fig. 3d).

Table 2 
Percentage monthly and annual difference (%) of gas pollutant concentrations between COVID-19 and BAU scenario during the year 2020. A negative result indicates a 
decrease during COVID-19.

O3 NOx SO2

Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann.

North America − 0.2 − 1.5 − 0.7 0.2 − 0.6 − 0.4 − 14 − 3.2 − 10.9 − 6.3 − 4.0 − 10.4 − 3.2 3.3 − 3.0
Europe − 0.2 − 1.6 − 1.1 2.4 − 0.3 − 0.3 − 30.8 − 4.6 − 12.9 − 9.6 − 0.8 − 14.6 − 6.8 − 9.2 − 7.3
Eastern Asia 4.0 − 2.1 − 0.7 − 3.0 − 1.1 − 25.3 0.9 2.2 10.3 0.1 − 13.5 2.7 8.7 10.8 5.1
Southern Asia − 0.2 − 3.4 − 1.5 − 0.5 − 1.4 0.5 − 27.3 − 10.4 − 3.0 − 8.1 0.1 − 20.7 − 7.8 − 1.0 − 5.8
Eurasia − 0.1 − 1.7 − 0.7 0.3 − 0.6 − 0.8 − 8.8 − 1.3 − 5.8 − 3.0 − 0.8 − 19.1 − 6.0 − 11.0 − 7.9
South-East Asia and Developing 

Pacific
− 0.3 − 2.6 − 1.6 − 0.8 − 1.4 − 0.9 − 9.3 − 5.8 − 3.8 − 4.8 − 1.9 − 11.8 − 5.1 4.7 − 3.1

Asia-Pacific Developed 0.0 − 1.2 − 1.3 − 0.8 − 0.9 0.1 − 4.2 − 3.3 − 1.4 − 2.4 0.7 − 13.1 − 6.3 − 1.5 − 4.3
Middle East − 0.2 − 3.3 − 1.6 − 0.9 − 1.4 0.0 − 20.8 − 10.9 − 8.0 − 9.8 − 0.1 − 11.3 − 4.6 − 3.8 − 4.9
Africa − 0.2 − 2.2 − 1.1 − 0.7 − 1.0 − 0.1 − 9.8 − 4.1 − 1.5 − 3.3 − 0.2 − 7.1 − 1.6 − 1.7 − 2.3
Latin America & Caribbean − 0.1 − 2.6 − 1.8 − 1.1 − 1.4 − 0.1 − 19.2 − 16.8 − 7.2 − 10.3 − 0.7 − 13.8 − 7.8 − 2.8 − 5.7
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4.2. Ozone

The BAU simulated global annual average surface concentration of 
O3 is 36.6 ppb (42 ppb over land). The area of Southern Asia has the 

highest annual average surface concentration of O3 (61.1 ppb), followed 
by the Middle East (59.1 ppb), while the lowest O3 concentrations are 
simulated over the Asia-Pacific Developed region (33.3 ppb annual 
average). For North America, Europe, and East Asia the annual surface 

Fig. 3. (a) Annual average NOx concentration (ppb) in the BAU scenario, (b) monthly average NOx concentration change (%) during 2020 at specific locations and 
monthly average spatial NOx concentration change (ppb) in (c) February, (d) April, (e) July and (f) November between BAU and COVID-19 and scenario; a negative 
change (blue) corresponds to a decrease in NOx concentration during COVID-19. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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concentrations are 40.2 ppb, 37.8 ppb, and 49.8 ppb, respectively 
(Fig. 4a).

Using the CONFORM emission adjustment factors to account for 
emission changes during the COVID-19 pandemic (CONFORM 

simulation scenario), the simulated global annual average O3 concen
tration over land decreased by 0.3 ppb (0.8 %; Fig. S3). The largest 
decrease was simulated in the month of May (− 1.2 ppb, or 2.5 %), while 
in February the global average O3 concentration was increased by 0.04 

Fig. 4. (a) Annual average O3 concentration (ppb) in the BAU scenario, (b) monthly average O3 concentration change (%) during 2020 at specific locations and 
monthly average spatial O3 concentration change (ppb) in (c) February, (d) April, (e) July and (f) November between BAU and COVID-19 and scenario; a negative 
change (blue) corresponds to a decrease in O3 concentration during COVID-19. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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ppb (0.2 %). During February, changes in O3 precursor emissions are 
minimal around the world, except for Eastern Asia, where the first 
lockdowns were enforced to prevent the spread of the new pandemic 
(Fig. 4b; Table 2). The densely populated urban areas of Eastern Asia are 

characterized by high NOx concentrations. In such NOx-saturated envi
ronments (i.e., low VOC/NOx ratio), the drastic reduction in NOx 
emissions can lead to a decrease in O3 titration and thus an increase in 
O3 concentration (Fig. S4). The simulated O3 concentration over Eastern 

Fig. 5. (a) Annual average SO2 concentration (ppb) in the BAU scenario, (b) monthly average SO2 concentration change (%) during 2020 at specific locations and 
monthly average spatial SO2 concentration change (ppb) in (c) February, (d) April, (e) July and (f) November between BAU and COVID-19 and scenario; a negative 
change (blue) corresponds to a decrease in SO2 concentration during COVID-19. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.)
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Fig. 6. (a) Annual average PM2.5-Sulfate concentration (μg m− 3) in the BAU scenario, (b) monthly average PM2.5-Sulfate concentration change (%) during 2020 at 
specific locations and monthly average spatial PM2.5-Sulfate concentration change (μg m− 3) in (c) February, (d) April, (e) July and (f) November between BAU and 
COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM2.5-Sulfate concentration during COVID-19. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)
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Asia during February is increased by 4 % on a regional average 
(Table 2). These findings are consistent with the results of Le et al. 
(2020) and Venter et al. (2020) as well as with the results of many field 
observations during this period as summarized by Gkatzelis et al. 
(2021a). Increases in O3 concentrations are also evident after April, 
when lockdowns began to be enforced, in several polluted regions of 
central Europe, consistent with the findings of Cuesta et al. (2022), 
northeastern US and California, in agreement with Campbell et al. 
(1994) and Wang et al. (2024) (Fig. 4d). Similar increases are observed 
in Latin America, particularly in São Paulo (Fig. 4d and e), in South 
Africa (Fig. 4d and e; Keller et al., 2021), and in Southern Asia, espe
cially in New Delhi (Fig. 4e and f), consistent with the findings of 
Gopikrishnan et al. (2022). However, the largest O3 increases are 
simulated in November and December (Figs. S5 and 4b) by 2.4 % and 
3.4 %, respectively, over Europe and by 0.2 % and 0.8 %, respectively, 
over North America, when the lockdowns were reinforced to combat the 
second wave of the pandemic, and the winter NOx-saturated conditions 
further favor the increase of O3 after the reduction of NOx emissions 
(Fig. S4). On the other hand, over areas with higher VOC/NOx ratios (e. 
g., NOx-limited rural environments) a decrease in NOx emissions can 
lead to a decrease in O3 concentrations (Fig. S4). Simulated regional 
annual average O3 concentrations decreased by up to 1.4 % in Southern 
Asia (1 ppb), South-East Asia and Developing Pacific (0.7 ppb), Latin 
America and the Caribbean (0.5 ppb), and the Middle East (0.9 ppb). In 
Southern Asia, the largest decrease (2.5 ppb, or 3.4 %) is simulated in 
April, in agreement with Gaubert et al. (2021) and Huang et al. (2021), 
and the smallest decrease (0.2 ppb, or 0.5 %) is simulated in October and 
November.

4.3. Sulfur dioxide

The global annual average SO2 concentration is 0.24 ppb (0.65 ppb 
over land), with the highest concentrations simulated over the densely 
populated areas of Eastern and Southern Asia (2.72 ppb regional 
average; Fig. 5a). On the other hand, North America has the lowest 
regional average SO2 concentration of 0.15 ppb due to the drastic 
reduction of its emissions over the last 40 years.

According to the CONFORM simulation scenario, the global annual 
average SO2 concentration over land decreases by 4 % (Fig. S3), which is 
in line with the 2 % decline observed by Amritha et al. during the 
April–May 2020 period. The main sources of SO2 are emissions from 
industry and the energy sector. Industrial activity was severely affected 
during the quarantine period, while the energy sector was least affected 
by the closures during the COVID-19 pandemic, as the reduction in 
energy demand from commercial buildings was offset by an increase in 
demand from households (Zheng et al., 2021). Nevertheless, global 
average SO2 emissions were reduced by 12 % in April, following large 
SO2 reductions in most locations except East Asia (Fig. 5b and d; 
Table 2). An increasing effect dominates East Asia after April, with the 
highest increase in September (14.3 %; Fig. 5b). A similar effect is 

reported by Zheng et al. (2020) and Liu et al. (2020). Increased indus
trial production and shipping are the main reasons for this 
post-quarantine recovery (Fig. 1 and S1; Fig. 5b and d). The most sig
nificant SO2 decrease occurs over Southern Asia and Eurasia during 
April (20 %), confirming the results of Amritha et al. (2024) and Sekiya 
et al. (2023). Meanwhile, the Middle East and Latin America and the 
Caribbean experience a significant decrease in April (11–14 %). The SO2 
reduction over South Asia tapers off after April, reaching BAU levels by 
the end of the summer. The only regions that continue to show signifi
cant SO2 reductions until the end of the year (around 10 %) are Europe 
(Fig. 5b) and Eurasia (Table 2). In the remaining regions, SO2 concen
trations after November are in the range of BAU levels (e.g., Africa, 
developed Asia-Pacific) or even higher (e.g., East Asia, North America).

5. Impact of emission changes on atmospheric aerosols during 
the COVID-19 pandemic

5.1. Sulfate

The global average surface concentration of sulfate aerosol is 0.33 μg 
m− 3 (0.7 μg m− 3 over land). Sulfate concentrations peak over Southern 
Asia (regional average of 3 μg m− 3), followed by the Middle East (2.4 μg 
m− 3) and Eastern Asia (1.9 μg m− 3). On the contrary, the lowest con
centrations are calculated over North America (0.2 μg m− 3) due to the 
strong reduction of SO2 emissions as discussed in section 4.3. The global 
annual average sulfate concentration over land decreased by 3 % 
(Fig. S3) after considering the emission reduction due to the lockdowns 
in 2020. Following the changes in SO2 concentrations, sulfate decreases 
by 17 % over Eastern Asia in February. Since North America is affected 
by the long-range transport of gas-phase pollutants from Eastern Asia 
(Jaffe et al., 1999; Karydis et al., 2012; Lin et al., 2014), the sulfate 
concentration over North America also decreases during February, even 
though the local authorities have not yet imposed lockdowns (Fig. 6b, 
Table 3). After the global spread of COVID-19, sulfate concentrations 
begin to decrease in each region, reaching a maximum global average 
decrease of 9 % (− 0.1 μg m− 3) in April. During April, the largest 
decrease is simulated over Southern Asia (17 % regional average), while 
the smallest decrease is simulated over Eastern Asia (3 % regional 
average), as sulfate increases in many parts of Eastern Asia due to the 
increase in Industrial emissions and shipping (Fig. 6b and d, Fig. 1 and 
S1). Le et al. (2020) also report that an induced reduction in NOx 
emissions has led to an increase in sulfate aerosol over China. The in
crease in sulfate over Eastern Asia intensifies towards the end of the year 
(reaching 6 % in November), leading to an increase in sulfate in regions 
affected by transported pollution (e.g., Southeast Asia and developing 
Pacific, North America; Fig. 6 and Table 3). Over Europe, sulfate de
creases significantly during the first phase of the pandemic (9 % in 
April), in accordance with Sekiya et al. (2023), but only slightly during 
the second phase (3 % in November) despite the strong decrease in SO2 
(section 4.3), mainly due to increased precipitation and reduced 

Table 3 
Percentage monthly and annual difference (%) of inorganic aerosol pollutant concentrations between COVID-19 and BAU scenario during the year 2020. A negative 
result indicates a decrease during COVID-19.

Sulfate Nitrate Ammonium

Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann.

North America − 5.1 − 5.2 0.0 5.5 0.6 − 2.5 − 10.8 − 1.3 − 4.6 − 4.4 − 3.6 − 11.2 − 1.7 − 2.8 − 2.5
Europe − 1.2 − 9.3 − 5.6 − 3.2 − 4.5 − 0.8 − 26.6 − 7.4 − 8.7 − 9.4 − 0.8 − 24.7 − 8.6 − 6.8 − 8.6
Eastern Asia − 6.1 − 3.1 3.0 6.4 1.5 − 14.6 − 1.0 2.4 1.1 − 0.9 − 11.9 − 4.6 4.3 2.9 0.0
Southern Asia − 0.3 − 16.8 − 5.9 0.7 − 4.3 0.2 − 19.0 − 8.3 − 2.4 − 6.1 0.0 − 33.2 − 10.1 − 1.2 − 8.2
Eurasia − 1.0 − 13.2 − 2.6 − 6.8 − 4.9 − 1.3 − 12.5 − 1.5 − 3.3 − 3.3 − 1.1 − 19.2 − 3.7 − 4.7 − 6.1
South-East Asia and Developing Pacific − 2.0 − 9.6 − 3.4 2.5 − 2.7 − 2.1 − 13.8 − 2.3 0.7 − 3.6 − 2.2 − 12.0 − 5.7 2.0 − 4.3
Asia-Pacific Developed 0.3 − 10.1 − 4.3 − 2.2 − 3.9 − 0.5 − 1.2 − 3.3 − 0.2 − 1.9 1.8 11.6 − 0.5 − 0.9 2.0
Middle East − 0.4 − 11.6 − 5.0 − 2.2 − 4.1 − 0.4 − 6.0 − 2.5 − 3.1 − 0.8 − 0.5 − 27.3 − 9.9 − 3.8 − 8.4
Africa − 0.5 − 8.7 − 2.5 − 1.1 − 3.0 − 0.2 0.0 − 0.6 − 1.0 − 0.6 − 0.5 − 12.2 − 3.6 − 2.3 − 4.7
Latin America & Caribbean − 0.5 − 11.6 − 6.2 − 2.4 − 4.7 − 0.1 − 6.0 − 7.9 − 3.0 − 4.5 − 0.4 − 15.1 − 11.0 − 4.9 − 7.2
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Fig. 7. (a) Annual average PM2.5-Nitrate concentration (μg m− 3) in the BAU scenario, (b) monthly average PM2.5-Nitrate concentration change (%) during 2020 at 
specific locations and monthly average spatial PM2.5-Nitrate concentration change (μg m− 3) in (c) February, (d) April, (e) July and (f) November between BAU and 
COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM2.5-Nitrate concentration during COVID-19. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)
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photochemistry. In addition, the increased O3 concentrations and other 
atmospheric oxidants (e.g., OH− , H2O2) during November (see section 
4.1) accelerated the gaseous and aqueous phase production of H2SO4, 
which compensated for the decreased SO2 emissions (Fig. S5). This 

aligns with Wang et al. (2024), who emphasized heterogeneous chem
istry, especially under humid and polluted conditions, as a significant 
contributor to sulfate formation.

Fig. 8. (a) Annual average PM2.5-Ammonium concentration (μg m− 3) in the BAU scenario, (b) monthly average PM2.5-Ammonium concentration change (%) during 
2020 at specific locations and monthly average spatial PM2.5-Ammonium concentration change (μg m− 3) in (c) February, (d) April, (e) July and (f) November 
between BAU and COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM2.5-Ammonium concentration during COVID-19. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

A.T. Koumparos et al.                                                                                                                                                                                                                         Atmospheric Environment: X 27 (2025) 100361 

13 



Fig. 9. (a) Annual average PM2.5-POA concentration (μg m− 3) in the BAU scenario, (b) monthly average PM2.5-POA concentration change (%) during 2020 at 
specific locations and monthly average spatial PM2.5-POA concentration change (μg m− 3) in (c) February, (d) April, (e) July and (f) November between BAU and 
COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM2.5-POA concentration during COVID-19. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)
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5.2. Nitrate

The simulated global annual average surface nitrate aerosol con
centration is 0.4 μg m− 3 (0.8 μg m− 3 over land). The highest regional 
average concentrations are simulated over Eastern Asia (3.6 μg m− 3) and 
Southern Asia (3 μg m− 3). Following the sharp reduction in NOx emis
sions during the 2020 lockdowns (Section 2.3), global annual average 
nitrate concentrations over land decreased by 3 % (Fig. S3). Over 
Eastern Asia, nitrate decreases by 15 % in February and 1 % in April, 
before increasing again relative to BAU levels, peaking at a 2.5 % in
crease in summer (Fig. 7b, Table 3). The largest decrease in nitrate 
concentrations is simulated over Europe (27 % in April; Fig. 7; Table 3). 
Over Europe in BAU, the fraction of total nitric acid present in the 
aerosol phase is high (annual average of 83 %; Fig. S6) due to the high 
availability of NH3 in the region. Therefore, the strong reduction of NOx 
emissions (35 % in April) has a direct impact on nitrate aerosol forma
tion in the region. The annual average reduction of nitrate in Europe is 
about 10 %. For the same reasons, nitrate is also significantly reduced 
over Southern Asia (6 % annual average) with a peak reduction of 19 % 
in April. On the other hand, nitrate reduction is low in areas where ni
trate formation is limited by the availability of NH3 (e.g., North Amer
ica) and the high temperatures (e.g., Middle East) (Fig. S6; Table 3). 
Nitrate reduction is also low in areas where NOx emission reduction is 
weak (e.g., Africa; Table 3). Furthermore, the increased oxidizing ca
pacity due to NOx reduction, could also lead to a relative increase in 
secondary aerosols, such as nitrate, within the aerosol composition (Liu 
et al., 2021b; Tian et al., 2021).

5.3. Ammonium

The simulated annual average surface concentration of ammonium 
aerosol is 0.1 μg m− 3 (0.35 μg m− 3 over land). The highest ammonium 
concentrations are simulated over Southern and Eastern Asia (1.7 and 
1.5 μg m− 3, respectively). Although NH3 emissions are not as affected by 
the 2020 lockdowns, in some cases an increase occurred due to the 
agricultural sector (Kuttippurath et al., 2024). The reduction in SO2 and 
NOx emissions affects the partitioning of NH3 into the aerosol phase, 
resulting in a global annual decrease in continental ammonium con
centrations of 4.5 % (Fig. S3). Viatte et al. (2023) attributed the decline 
to reduced emissions of NH3 and NOx from industrial activities and 
transportation. The largest annual reduction of ammonium is simulated 
over Europe (9 %) with a peak of 25 % in April (Fig. 8b, Table 3). Over 
Southern Asia, ammonium is reduced by 33 % in April, but the reduction 

weakens by the end of the year (1 %) due to the slight increase in sulfuric 
acid (section 5.1). The ammonium reduction is also significant over the 
Middle East (8 % annually) due to the significant reduction of sulfate in 
the region (Table 3). On the other hand, the reduction of ammonium in 
North America is weak, especially in the western USA (Fig. 8). Following 
the changes in sulfate and nitrate concentrations, ammonium decreases 
over East Asia in February (12 %) and April (5 %) and increases there
after (Table 3).

5.4. POA and SOA from anthropogenic SVOC and IVOC

The global annual average surface concentration of POA and SOA 
from anthropogenic S/IVOC emissions is 0.05 μg m− 3 (0.2 μg m− 3 over 
land) and 0.1 μg m− 3 (0.3 μg m− 3 over land), respectively, with peaks 
over the regions of Southern Asia (1.2 μg m− 3 POA and 2.4 μg m− 3 SOA 
regional average) and Eastern Asia (1.1 μg m− 3 POA and 0.7 μg m− 3 SOA 
regional average). After application of the CONFORM emission adjust
ment factors, the global annual average POA and SOA from S/IVOC 
emissions over land are reduced by 5 % and 3.5 %, respectively (Fig. S3). 
Over Eastern Asia, POA concentrations decrease by 15 % in February 
and 4 % in April, and then increase, following the emission trends 
(Fig. 9; Table 4). SOA concentrations in Eastern Asia decrease by 6 % in 
February and 5 % in April and increase by 4 % in summer (Fig. 10; 
Table 4). However, in contrast to POA, SOA concentrations decrease 
again from BAU levels after October, despite the increase in S/IVOC 
emissions. This slight decrease is related to the lower atmospheric 
oxidant levels during this period, as discussed in section 4 (Fig. S5), 
which led to less efficient oxidation of the emitted S/IVOC and subse
quent reduced SOA production. In April, POA and SOA concentrations 
decreased globally, with large decreases over Southern Asia and Europe 
(24 % for POA and 18 % for SOA) and over the Middle East (20 % for 
POA and 12 % for SOA) (Figs. 9 and 10, Table 4). Over Europe, POA and 
SOA reductions are small during the summer (4 % for both), and POA 
reductions become important again after November (8 %) during the 
second wave of the pandemic. However, the SOA reduction in November 
remains small (4 %), because of the dramatic increase in oxidant levels 
(Fig. S5). On the other hand, over Africa, POA and SOA concentrations 
over densely populated areas (e.g., Nigeria, and South Africa) increase 
slightly relative to BAU levels after July (Table 4) mainly due to increase 
in S/IVOC emissions from the residential sector (Fig. S2), consistent with 
the results of Han et al. (2024).

Table 4 
Percentage monthly and annual difference (%) of anthropogenic organic aerosol pollutant concentrations between COVID-19 and BAU scenario during the year 2020. 
A negative result indicates a decrease during COVID-19.

POA SOA from S/IVOC SOA from VOC

Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann.

North America − 4.7 − 13.0 − 5.1 − 2.3 − 5.1 − 6.2 − 8.5 − 2.2 2.0 − 2.3 − 5.4 − 10.6 − 4.5 1.9 − 3.4
Europe − 0.3 − 23.6 − 3.9 − 8.2 − 7.8 − 1.8 − 17.3 − 3.5 − 3.8 − 5.6 − 2.1 − 19.5 − 5.8 − 4.7 − 7.0
Eastern Asia − 15.0 − 4.3 2.0 0.5 − 1.7 − 5.9 − 4.7 2.1 − 1.2 − 1.1 − 6.6 − 4.9 2.8 1.3 − 0.2
Southern Asia 0.1 − 24.2 − 12.2 − 2.4 − 8.3 − 0.2 − 17.8 − 8.1 − 2.9 − 6.4 − 0.2 − 20.1 − 9.2 − 2.9 − 7.2
Eurasia − 1.9 − 18.5 − 0.1 − 5.3 − 5.3 − 1.6 − 13.2 1.0 − 3.4 − 3.8 − 1.4 − 15.0 − 1.1 − 3.4 − 4.6
South-East Asia and Developing Pacific − 1.6 − 9.7 − 2.8 − 0.1 − 3.2 − 1.9 − 8.5 − 3.4 − 0.5 − 3.3 − 1.8 − 8.9 − 4.6 0.7 − 3.5
Asia-Pacific Developed 0.7 − 15.4 − 1.8 − 7.5 − 5.8 0.5 − 8.8 − 2.4 − 3.1 − 3.6 0.3 − 9.1 − 4.2 − 2.6 − 4.1
Middle East − 0.3 − 19.9 − 9.2 − 4.3 − 7.9 − 0.7 − 12.4 − 5.4 − 2.8 − 4.7 − 0.8 − 18.0 − 8.9 − 4.6 − 7.3
Africa − 0.3 − 10.8 − 2.7 − 2.0 − 3.3 − 0.5 − 9.5 − 2.4 − 1.8 − 3.1 − 0.6 − 11.2 − 4.1 − 2.9 − 4.3
Latin America & Caribbean − 0.3 − 14.8 − 11.9 − 5.2 − 7.9 − 0.4 − 11.3 − 8.0 − 3.5 − 5.7 − 0.4 − 14.8 − 10.9 − 5.2 − 7.7
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5.5. SOA from anthropogenic VOCs

The global annual average surface concentration of SOA from 
anthropogenic VOC emissions is 0.2 μg m− 3 (0.5 μg m− 3 over land). The 

area of Southern Asia has the highest average surface concentration (3.5 
μg m− 3), followed by South-East Asia and the Developing Pacific (1.6 μg 
m− 3) and Eastern Asia (1.7 μg m− 3). The lowest average concentration 
belongs to Asia-Pacific Developed (0.1 μg m− 3), followed by North 

Fig. 10. (a) Annual average PM2.5-SOA concentration (μg m− 3) from anthropogenic SVOC and IVOC emissions in the BAU scenario, (b) monthly average PM2.5-SOA 
concentration change (%) during 2020 at specific locations and monthly average spatial PM2.5-SOA concentration change (μg m− 3) in (c) February, (d) April, (e) July 
and (f) November between BAU and COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM2.5-SOA concentration during COVID-19. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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America and Eurasia (0.2 μg m− 3). After applying the CONFORM 
emission adjustment factors, the global annual average SOA concen
trations from anthropogenic VOCs over land are reduced by 4.5 % 
(Fig. S8). In Southern Asia, the largest decrease relative to BAU was 

calculated in April (20 %; Fig. 11b, Table 4). In addition, the smallest 
decrease was calculated in November (3 %; Fig. 11b and f). In Europe, 
the largest decrease occurred in April (20 %; Fig. 11b), while the 
smallest decrease was calculated in October (3 %; Fig. 11, Table 4), as 

Fig. 11. (a) Annual average PM2.5-SOA concentration (μg m− 3) from anthropogenic VOC emissions in the BAU scenario, (b) monthly average PM2.5-SOA con
centration change (%) during 2020 at specific locations and monthly average spatial PM2.5-SOA concentration change (μg m− 3) in (c) February, (d) April, (e) July 
and (f) November between BAU and COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM2.5-SOA concentration during COVID-19. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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oxidant levels increased (Fig. S5). In both continents, SOA reduction 
events became less pronounced after the summer months due to the 
interruption of the quarantine measures and began to occur again 
around November–December. In North America, the largest decrease 

occurred in April and May (11 % and 9 %, respectively), while the 
largest increase occurred in December (5 %), the month in which 
oxidant concentrations also increased (Fig. S5). After May, the 
decreasing effects were less pronounced until the increasing effect after 

Fig. 12. (a) Annual average total PM2.5 concentration (μg m− 3) in the BAU scenario, (b) monthly average PM2.5 concentration change (%) during 2020 at specific 
locations and monthly average spatial PM2.5 concentration change (μg m− 3) in (c) February, (d) April, (e) July and (f) November between BAU and COVID-19 and 
scenario; a negative change (blue) corresponds to a decrease in PM2.5 concentration during COVID-19. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.)
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October. In Eastern Asia the largest decrease was during February (7 %), 
while after May, increasing results were calculated until the end of the 
year (Fig. 11). The largest increase in Eastern Asia was in September (6 
%). Tian et al. (2021) also reported that in China the increase in O3 and 
NO3 radicals during the lockdown promoted SOA formation. Latin 
America and the Caribbean also experienced significant declines, with a 
global annual decline of approximately 8 %. It is important to note that 
the model does not include emissions from cooking and volatile chem
ical products (VCPs) emissions. Recent studies have identified these 
sources as significant emerging contributors to anthropogenic VOC 
emissions, capable of influencing urban atmospheric chemistry 
(Stavroulas et al., 2019; Gkatzelis et al., 2021a; Coggon et al., 2021). 
Consequently, the omission of these emissions may result in un
derestimations of modeled SOA concentrations and could potentially 
impact the interpretation of pollutant responses to pandemic-related 
restrictions presented in this study.

5.6. Total fine particulate matter

The annual average surface concentration of PM2.5 is reported to be 
8.1 μg m− 3 over land and 3.7 μg m− 3 globally. Eastern and Southern Asia 
have the highest average annual concentrations at approximately 20 μg 
m− 3. The Middle East and Africa also have significant concentrations, 
averaging ~16 μg m− 3, particularly during the summer months 
(Fig. 12b, Table 5). In contrast, North America has the lowest average 
concentration at 2.6 μg m− 3, followed by Eurasia at 3.2 μg m− 3 and the 
Asia-Pacific Developed region at 3.4 μg m− 3. After applying the 
CONFORM emission adjustment factors, the global annual average 
PM2.5 concentrations over land decreased by 4 %. In Southern Asia, the 
largest monthly reduction was observed in April (11 %; 
Fig. 12d–Table 5). Observations from India indicate a decrease in PM2.5 
of up to 37 % (March–May 2020) compared to the period 2017–2019 
(Kant et al., 2020), while additional studies report PM2.5 declines of 
10–20 % across various Indian regions (Patel et al., 2024). The simulated 
reductions were less pronounced after April, with the smallest calculated 
in October (1 %). In Europe, the largest reduction also occurred in April 
(15 %; Fig. 12), which is consistent with the results of Venter et al. 
(2020) and Evangeliou et al. (2025) and corresponds to approximately 1 
μg m− 3, consistent with Hammer et al. (2021). The smallest decrease in 
Europe occurred in October (3 %), but reductions intensified after that 
month. In North America, the largest reduction occurred in March (6 %), 
with levels gradually returning to BAU levels by July (Fig. 12). In East 
Asia, the largest decrease in PM2.5 occurred in February (9 %), which is 
lower than the 24 % decrease reported by Zheng et al. (2021) for the 
same period. On the other hand, September showed the largest increase 
(4 %; Fig. 12). Seasonal variations in Eastern Asia showed increasing 
concentrations from April to September, followed by a decreasing trend, 
culminating in a 2 % decrease in December.

6. Conclusions

This study explores the global impact of emission changes on at
mospheric trace gases and aerosols during the COVID-19 pandemic. The 
analysis encompasses key gas pollutants (e.g., O3, NOx, SO2), inorganic 
aerosols (sulfate, nitrate, ammonium), and organic aerosols, including 
primary organic aerosol (POA) and secondary organic aerosols (SOA) 
from the oxidation of SVOCs, IVOCs, and VOCs.

Most regions experienced declines in pollutant concentrations during 
lockdowns. Eastern Asia saw the steepest declines in February (except 
for O3), with subsequent increases in pollutants after spring. SO2 and 
sulfate aerosols registered the largest annual increases (5 % and 1.5 %, 
respectively), attributed mainly to industrial activity increases, as indi
cated by emission activity factors. Additionally, oxidants are critical to 
aerosol formation. Therefore, even small increases in oxidants (e.g., O3, 
OH, etc.) can substantially influence aerosol concentrations, such as 
sulfate and SOA. Europe recorded substantial decreases in secondary 
pollutants, especially in April, though O3 saw only a modest annual 
average decrease of 0.3 %, due to rising levels in November and 
December. PM2.5 (5.5 %) and nitrate aerosols (9.4 %) showed the largest 
continental reductions with significant seasonal variability. Pollutant 
declines were less pronounced in summer, with a marked rebound in the 
autumn, reflecting adjustments in emission factors. Southern Asia, un
like Europe, did not experience a significant drop in restrictions during 
the summer or a second wave in the autumn. After April, when re
ductions peaked, declines gradually began to fade, with November and 
December seeing increases in NOx and sulfate aerosols due to higher 
energy demands. Notably, POA and SOA from anthropogenic S/IVOC 
emissions saw the greatest annual decreases in Southern Asia (8.3 % and 
6.4 %, respectively). North America experienced similar patterns, with 
notable decreases in April, moderation in summer, and a return to 
higher reductions by autumn. However, increases in December were 
evident for O3 (0.8 %), sulfate aerosols (7.4 %), and SOA from anthro
pogenic S/IVOC (3.6 %) and VOC (5 %). Latin America and the Carib
bean and the Middle East exhibited significant, mostly declining trends. 
Latin America and the Caribbean recorded the largest annual decreases 
for O3 (1.4 %), NOx (10.3 %), and SOA (7.7 %), while the Middle East 
registered the highest decrease in O3 (1.4 %).

In conclusion, this study highlights the complex and regionally 
diverse responses of atmospheric trace gases and aerosols to changes in 
emissions during the COVID-19 pandemic. The results reveal the inter
action between emission reductions and atmospheric chemistry, 
providing important insights into the dynamics of air pollution in un
precedented situations. While the noticeable decreases in pollutants 
during lockdowns illustrate the potential of emission reductions to 
improve air quality, the subsequent rebound and regional differences 
emphasize the temporary nature of these changes. These findings 
highlight the importance of implementing sustained, systemic measures 
to achieve lasting improvements in air quality.
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Code and data availability

The usage of MESSy (Modular Earth Submodel System) and access to 
the source code is licensed to all affiliates of institutions which are 
members of the MESSy Consortium. Institutions can become a member 
of the MESSy Consortium by signing the “MESSy Memorandum of Un
derstanding”. More information can be found on the MESSy Consortium 

Table 5 
Percentage monthly and annual difference (%) of total fine particulate matter 
concentrations between COVID-19 and BAU scenario during the year 2020. A 
negative result indicates a decrease during COVID-19.

PM2.5

Feb. Apr. Jul. Nov. Ann.

North America − 2.7 − 5.9 − 0.7 0.1 − 1.4
Europe − 0.8 − 15.4 − 4.2 − 5.5 − 5.4
Eastern Asia − 9.1 − 0.5 1.8 2.2 − 0.1
Southern Asia 0.0 − 11.1 − 5.7 − 1.6 − 4.0
Eurasia − 1.0 − 8.4 − 1.1 − 3.7 − 2.8
South-East Asia and Developing Pacific − 1.4 − 6.1 − 2.6 0.7 − 2.2
Asia-Pacific Developed 0.0 − 1.5 − 1.3 − 0.4 − 0.6
Middle East − 0.2 − 4.2 − 2.1 − 1.5 − 1.9
Africa − 0.1 − 3.1 − 1.0 − 0.5 − 1.0
Latin America & Caribbean − 0.2 − 5.7 − 3.9 − 1.7 − 2.6
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website: http://www.messy-interface.org (last access: February 24, 
2025). CAMS v4.2 anthropogenic emissions inventory was obtained 
from https://eccad.sedoo.fr/#/catalogue (last access: February 24, 
2025). CONFORM adjustment factors data were downloaded from htt 
ps://eccad.aeris-data.fr/essd-conform/(last access: February 24, 
2025). The data produced in the study is available in the open access 
repository zenodo: https://doi.org/10.5281/zenodo.14916461 (last 
access: February 24, 2025).
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Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., 
Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De 
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., 
Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R.J., Hólm, E., 
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Pando, C., 2020. Meteorology-normalized impact of the COVID-19 lockdown upon 
NO2 pollution in Spain. Atmos. Chem. Phys. 20, 11119–11141. https://doi.org/ 
10.5194/acp-20-11119-2020.

Pathak, M., Patel, V.K., Kuttippurath, J., 2023. Spatial heterogeneity in global 
atmospheric CO during the COVID-19 lockdown: implications for global and 
regional air quality policies. Environ. Pollut. 335, 122269. https://doi.org/10.1016/ 
j.envpol.2023.122269.

Poullain, M., Guerrieri, J.M., Miller, M.E., Utgés, M.E., Santini, M.S., Acosta, M.M., 
Fernández, A., Marsico, F.L., 2022. NO2 pollution decrease in big cities of latin 
america during COVID-19 pandemic. medRxiv, 22277819. https://doi.org/10.1101/ 
2022.08.08.22277819, 2022.2008.2008. 
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