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This study employs the global chemistry—climate model EMAC, combined with emission adjustment factors
(CONFORM), to evaluate the global impacts of the 2020 COVID-19 lockdowns on secondary air pollutants.
Unlike earlier studies limited to short periods or specific regions, this work captures seasonal, spatial, and sec-
toral variability in emissions and pollutant formation. It examines both primary pollutants (e.g., NOy, SO2) and
secondary pollutants such as ozone and PM; 5 components. Significant NOy reductions were simulated, with peak
decreases of 31 % in Europe and 25 % in Eastern Asia during lockdowns. SO dropped by up to 20 % in Southern
Asia, while Eastern Asia saw a 14 % post-lockdown rebound due to increased industrial activity. Ozone responses
varied regionally, with increases of up to 4 % in urban areas in Eastern Asia due to reduced titration, while
Southern Asia saw decreases up to 1.4 %. Aerosol concentrations followed similar regional trends. Sulfate
declined by 17 % in Southern Asia while nitrate and ammonium dropped by 27 % and 33 % in Europe,
respectively. Global primary organic aerosol decreased by 4 %, with South Asia showing an 8 % reduction.
Secondary organic aerosol fell by 4 %, with the largest drop (8 %) in Latin America and the Caribbean. Overall,
PM;y 5 over land declined by 2 %, with Europe showing the largest regional decrease (6 %). These results
highlight the substantial but regionally varied effects of pandemic-related emission changes. However, even
substantial short-term reductions had limited impact on PM; 5 levels, underscoring the need for sustained, large-
scale emission cuts to meet WHO air quality guidelines.

1. Introduction responds to these pandemic-driven changes in emissions, and to

examine their impact on the formation of secondary air pollutants such

The COVID-19 pandemic led to unprecedented restrictions on human
activities, especially travel and commuting, resulting in rapid reductions
in anthropogenic pollutant emissions. Most countries imposed social
distancing measures, which affected not only the transportation sector
but also many businesses, which were temporarily out of operation,
while industry and manufacturing sectors had the minimum workload
(Skiriene and Stasiskiene, 2021). In contrast, residential activity and the
use of biomass and coal for heating and cooking increased (Kong et al.,
2023; Tian et al., 2021). Restrictions in the transport sector during the
shutdowns affected NOy emissions (Guevara et al., 2022), while changes
in the power and industrial sectors mainly affected SO, emissions
(Amritha et al., 2024). Therefore, the impacts on air quality may differ
between urban and suburban areas (Wang et al., 2021). These global
changes provide an opportunity to study how atmospheric composition
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as ozone (0O3) and fine particulate matter (PM 5).

Several studies have examined the influence of COVID-19 lockdowns
on air pollutant emissions and air quality in North America (Goldberg
et al., 2020; Jia et al., 2020; Forster et al., 2020), Europe (Petetin et al.,
2020; Ropkins and Tate, 2021; Cameletti, 1994; Giani et al., 2020), and
Asia (Zheng et al., 2020; Weber et al., 2020; Tian et al., 2021; Kong et al.,
2023; Ren et al., 2021; Kang et al., 2021; Li et al., 2022; Le et al., 2020;
Gao et al., 2021; Wang et al., 2021). Global-scale assessments have also
conducted (Doumbia et al., 2021; Gaubert et al., 2021; Gkatzelis et al.,
2021b; Yang et al., 2020; Fu et al., 2020; Smith et al., 2022; Adam et al.,
2021; Sanap, 1994; Cao et al., 2021; Tang et al., 2021), many of which
report a global drop in CO; emissions of about 6 %, and decreases in NOy
emissions ranging from 11 % to 29 % (Guevara et al., 2022; Camar-
go-Caicedo et al., 2021; Wang et al., 2024). Forster et al. (2020) and
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Hanaoka and Masui (2020) reported a 30 % decline in global NOy
emissions in April 2020. Meanwhile, Amritha et al. (2024) reported a
global average SO, reduction of 2 %, based on satellite observations.
These studies confirm widespread changes in atmospheric composition
due to reduced transportation and industrial activity, with strong
regional variability. Satellite-based retrievals further support these
trends, showing declines in tropospheric NO; and SO, columns over key
regions. Sekiya et al. (2023) found reductions of 19-25 % for NO5 and
14-20 % for SO, over North America, Europe, and East Asia in April
2020. Local studies in China and India also indicated drops of up to 40 %
in NO2 concentrations (Zheng et al., 2020; Xia et al., 2021). However,
such declines were often short-lived, with emissions increasing again
within a few months (Liu et al., 2020; Dong et al., 2022).

A large number of studies have also investigated the influence on
atmospheric  aerosol  concentrations  (Rodriguez-Urrego  and
Rodriguez-Urrego, 2020; Sekiya et al., 2023; Gkatzelis et al., 2021b;
Hammer et al., 2021; Venter et al., 2020; Fu et al., 2020; Zheng et al.,
2021; Tian et al., 2021; Le et al., 2020; Sanap, 1994; Liu et al., 2021a;
Collivignarelli et al., 2020; Stratoulias and Nuthammachot, 2020).
Global PMj, 5 levels fell by approximately 31 % during the lockdowns
(Venter et al., 2020), while PM;( decreased by 8-40 % depending on
location (Gkatzelis et al., 2021b). Regionally, China and India saw
substantial PMj 5 reductions of 24 % and up to 37 %, respectively (Zheng
et al., 2021; Kant et al., 2020). Satellite data confirmed sulfate and ni-
trate aerosol reductions of 8-21 % in polluted regions (Sekiya et al.,
2023), though in some areas, such as Rome, PMj; 5 increased due to
sustained local emissions (Fu et al., 2020). Wildfires also contributed to
elevated aerosol levels in South America, Mexico, and parts of Africa
(Sanap, 1994).

Ozone responses were more complex. A significant number of studies
have investigated the effects of COVID-19 lockdowns on O3 (Gkatzelis
et al., 2021b; Le et al., 2020; Fu et al., 2020; Liu et al., 2021a; Venter
et al., 2020; Adam et al., 2021; Gao et al., 2021; Patel et al., 2020;
Collivignarelli et al., 2020; Lian et al., 2020; Sharma et al., 2020; Sicard
et al., 2020). While NOy reductions in NOy-saturated urban areas led to
reduced Os titration and consequent increases in Oz up to 14 ppb (Le
et al., 2020; Tang et al., 2021), some NOx-limited regions experienced
modest decreases in O levels. Liu et al. (2021a) found that global O3 Air
Quality Index (AQI) rose by 10-27 % across many cities, while Venter
et al. (2020) observed a 4 % average increase in 34 countries. These
shifts were closely tied to VOC/NOy sensitivity and seasonal photo-
chemical regimes, with implications for secondary aerosol formation
(Adam et al., 2021).

Finally, a range of chemical transport and chemistry—climate models
have simulated the atmospheric effects of the COVID-19 lockdowns.
Giani et al. (2020), using WRF-Chem, found a 30 % reduction in PM; 5
over China and a 17 % reduction over Europe in early 2020. Gaubert
et al. (2021), employing CESM, observed wintertime increases in ozone
across northern China, Europe, and the United States, even amid NOyx
and VOC reductions, while O3 decreased in rural NOy-limited regions.
Additional studies using the CAM-chem model, including Ortega et al.
(2023), reported a mean decline of 9 % + 5 % in tropospheric column Og
between March and May 2020, based on observational sites worldwide.
Similarly, Bouarar et al. (2021), using the CAM-chem model, found that
free tropospheric O3 during spring and summer was 5-15 % lower than
climatological norms, while in the Southern Hemisphere,
COVID-19-related O3 decreases of 4-6 % were offset by simultaneous O3
increases from other atmospheric influences. Other regional-scale
studies using models such as WRF, CHIMERE, COSMO-ART, and HYS-
PLIT (e.g., Le et al., 2020; Huang et al., 2021; Casallas et al., 2024) also
captured region-specific patterns in air quality changes. These results
emphasize that model outcomes are highly sensitive to the choice of
emission inventories, chemistry schemes, meteorological inputs, and
resolution, all of which contribute to variability in simulated air quality
responses.

While most studies have focused on the first six months of 2020 to
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assess the impact of COVID-19 lockdowns on air quality, a compre-
hensive year analysis is crucial to fully understand the long-term effects.
Many existing studies have also been limited to specific regions or pe-
riods, often overlooking the seasonal, sectoral, and spatial emission
variations and their impact on secondary pollutants. To address this gap,
the present study employs a global modeling approach that covers the
entire year of 2020, allowing for a complete evaluation of the pan-
demic’s effects on global air quality and capturing the nuanced changes
in emissions and pollutant formation across different regions and sea-
sons. Between 2019 and 2020, the changes in emissions in residential
combustion, public energy, industry, and shipping sectors were also
influenced by factors unrelated to COVID-19, such as meteorological
changes (in particular a warmer winter) (Guevara et al., 2022). In this
work, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is
used for the first time to quantify the impact of national lockdowns for
the control of COVID-19 on regional and global air quality during the
year 2020, focusing on both primary and secondary pollutants. The
Copernicus Atmosphere Monitoring Service (CAMS) emission inventory
has been modified based on the gridded adjustment factors of the
CONFORM (COvid-19 adjustmeNt Factors fOR eMissions) dataset
(Doumbia et al., 2021). These adjustment factors vary temporarily and
are source specific (i.e., transportation, power generation, industry, and
residential) to account for changes in emissions imposed by each
country during the pandemic. This modeling framework allows us to
isolate and evaluate the atmospheric impacts of lockdown-related
emission changes with high spatial and temporal resolution, offering
insights relevant for both evaluating short-term effects on air quality but
also for assessing long-term strategies aimed at reducing pollution and
mitigating climate change.

2. Emissions description
2.1. Emissions inventory

In the current study, the Copernicus Atmosphere Monitoring Service
(CAMS v4.2) anthropogenic emissions inventory was used to simulate a
business-as-usual scenario (BAU) if no lockdowns enforced during the
year 2020. CAMS includes 36 chemical species emitted by 20 sectors
(Granier et al., 2019) with a monthly temporal coverage and a global
spatial coverage of 0.1 x 0.1° grid resolution. The global emission fluxes
provided by CAMS for the year 2020 are 71.7 Tg yr_* NOy, 66.7 Tg yr*
NH3, 98.3 Tg yr‘1 SO, 4.7 Tg yr_1 BC,and 11.7 Tg yr_1 OC. ". Emissions
from open biomass burning were obtained from the GFEDv3.1 database
(Van Der Werf et al., 2010). Organic compound (OC) emissions released
by the combustion of fossil fuels, biofuels, and biomass burning (i.e., in
savannah and forest fires) are introduced in the model as low volatility
(LVOG; C* < 0.32 pg m™3), semivolatile (SVOC; 0.32 pgm ™2 <C* < 320
ug m~3), and intermediate volatility (IVOC; 320 pg m 3 <C* < 3.2 x
10 pg m~3) organic compounds by using the emission factors of
Tsimpidi et al. (2016).

Sea salt mineral dust, and volcanic SO, emissions are based on the
AEROCOM dataset (Dentener et al., 2006). Sea salt consists of 30.6 %
Na®, 3.7 % Mg?*, 1.2 % Ca*, 1.1 % K* and 55 % Cl. Mineral cations
such as Ca?*, Mg?*, K*, and Na* are considered as the chemically active
components of the emitted bulk dust (Karydis et al., 2016; Klingmuller
et al., 2018). Biogenic emissions of NO from soils are calculated online
(Yienger and Levy, 1995) while NOx from lighting is also calculated
online (Grewe et al., 2001). Emissions of oceanic dimethyl sulfide (DMS)
are calculated online by the AIRSEA submodel (Pozzer et al., 2006). The
GEIA data set has been used to provide oceanic ammonia emissions and
emissions from soils under natural vegetation (Bouwman et al., 1997).

2.2. Emissions Adjustment factors

To simulate the impact of reduced atmospheric emissions on regional
and global air quality during the COVID-19 pandemic, the CONFORM
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Fig. 1. Monthly average adjustment factors used to estimate emission changes during the COVID-19 pandemic in the regions of (a) North America, (b) Europe, (c)
Eastern Asia, and (d) South Asia. The sectors affected include Shipping, Residential and Public Commercial, Industry, Road Transport, and Energy.

adjustment factors (Doumbia et al., 2021) were applied to the CAMS
v4.2 anthropogenic emissions inventory. The CONFORM dataset pro-
vides gridded adjustment factors for the transportation, power genera-
tion, industry, ships, and residential public and commercial sectors at
the same spatial and temporal resolution as the CAMS v4.2 global
anthropogenic emission inventory, on a daily, monthly, and annual
basis, starting in January 2020. The averaged adjustment factors we
used in our simulations are derived based on activity data from each
country and continent, i.e., mobility trends and traffic congestion index
for road transportation, container ship port calls for shipping, air traffic
data for aviation, coal consumption and crude steel production for in-
dustry, total electricity load for power generation, and mobility trends
for residential and commercial sectors (Doumbia et al., 2021).

To determine the influence of each most affected sector based on the
CONFORM dataset for NOy, SO, BC, OC, CO and anthropogenic VOCs
(aVOCs) emissions, we calculated the global average emission share of
each of the 6 pollutants from each sector. NOy is mainly emitted by the
energy (32 %), transportation (27 %), and industry (22 %) sectors, while
SO, is mainly emitted by energy (43 %) and industry (40 %). Both BC
and CO are mainly emitted by industry (38 % and 25 %, respectively)
and the residential/commercial sector (~40 % for both). For OC, the
residential/commercial sector is the main emitter (74 %). In the case of
aVOCs, the industry and transportation sectors are the main emitters

(~40 % for both). Considering these percentages, it is obvious that a
small change in sectors such as industry and energy can significantly
affect the emissions of certain air pollutants.

Fig. 1 depicts the timeseries of the adjustment factors for the year
2020, expressed as a percentage change in emissions from each sector
following Doumbia et al. (2021). The results in Fig. S1 include the highly
populated and industrialized regions of Eastern Asia, Europe, North
America, and South Asia, where activity data are more accurate and
largely available compared to other continents. During each COVID-19
lockdown (in February for Eastern Asia and in April for the remaining
areas), the industrial and road transportation sectors were the most
affected, in some cases with reductions of 40-55 % (Fig. S1 and S2). In
contrast, the other sectors experienced a maximum reduction of around
10 %, especially in the first six months of 2020. On the other hand, in the
case of Eastern Asia, the industry sector seems to have experienced a
significant increase after April, in some cases reaching values of more
than +20 %. The road transportation and shipping sectors in Eastern
Asia show a slight increase in some cases after the month of July, with
the shipping sector also showing an increase between February and
April (Fig. 1 and S1). The energy and industry sectors also show
increased emissions in Latin America in the second half of 2020 (Fig. S1
and S2). For South Asia, the energy sector increases in November
(Fig. S1). Finally, the impact of global travel restrictions on the aviation
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sector is evident worldwide, with most regions experiencing an average
annual reduction of around 50 % (Fig. S1). In February, aviation was
drastically reduced in the Eastern Asia region (Fig. 1 and S1) due to the
first outbreak of the coronavirus, while in April regions such as North
America and Europe began to impose travel restrictions and emissions
from aviation were reduced by more than 80 %. After the spring months,
the reduction slowed as coronavirus quarantine measures began to be
relaxed.

2.3. Changes in pollutant emissions during the COVID-19 pandemic

Fig. 2 shows the monthly average percentage change (%) in emis-
sions of the major pollutants between the COVID-19 pandemic and BAU
scenarios for the regions of Eastern Asia, Europe, South Asia, and North
America. Table 1 shows the corresponding annual average emissions
changes for ten regions of the world considered. In Eastern Asia, emis-
sions of all pollutants were reduced by more than 20 % in February,
especially aVOCs (about 25 %; Fig. 2¢) and NOy (about 20 %; Fig. 2c)
due to quarantine enforcement and drastic reductions in road traffic.
However, after April, emissions increased sharply, leading to increases
of up to 10 % compared to the BAU scenario, especially for SO2, due to
the increased activity of the industrial sector (Fig. 1). Overall, annual
average pollutant emissions have increased compared to the BAU sce-
nario, with the largest increase for aVOCs (5.4 %) and the smallest for
NOx (0.2 %). The largest decrease was for CO (1.6 %) followed by OC
(1.4 %) as shown in Fig. 2c. These findings are in accordance with
previous results reported by Liu et al. (2021b), Xia et al. (2021), and
Zheng et al. (2021), which observed significant reductions in SO3 and
CO emissions in China during quarantine, followed by a rebound in
pollutant emissions due to increased industrial activity and energy use,
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Table 1
Percentage annual difference (%) of pollutant emissions between COVID-19 and
BAU scenario. A negative result indicates a decrease during the corona period.

NOx avoCs  BC Cco SO, ocC
North America -8.0 —-13.2 -9.3 -11.8 -9.5 —-8.4
Europe -12.5 -9.5 -11.4 -8.2 -8.2 -7.2
Eastern Asia 0.2 5.4 1.7 -1.6 2.7 -1.4
Southern Asia -10.3 -10.9 -9.6 -10.0 -7.5 —6.5
Eurasia -5.2 -9.5 -7.3 —6.4 -7.8 —6.0
South-East Asia and -7.8 -7.0 -5.7 -73 6.4 -2.4
Developing Pacific
Asia-Pacific Developed -11.5 -13.2 -12.6 -109 -8.6 -9.0
Middle East -131 137 -138 -139 -6.0 -129
Africa -5.0 -5.0 -39 -36 —33 —2.6
Latin America & -16.9 —22.4 —15.8 -17.8 -9.0 —8.8

Caribbean

as highlighted by Dong et al. (2022). In contrast, pollutant emissions
over Europe, North America, and South Asia decrease after March, with
the largest reductions occurring in April (about 30 %; Fig. 2). Over South
Asia, pollutant emissions gradually increase after April until they reach
BAU levels in December (Fig. 2d). Over Europe (Fig. 2b) and North
America (Fig. 2a), pollutant emissions start to increase after April
reaching a minimum of about 10 % reductions compared to BAU levels
during the summer months, after which they decrease again following
the second wave of the coronavirus and the new closures. This inter-
annual variation in pollutant emissions has been reported by other
studies, showing similar seasonal trends influenced by pandemic re-
strictions and subsequent relaxations (Guevara et al., 2022).

North America shows the highest annual average reductions for
aVOCs and CO (~12 % on average) driven by 20-40 % reductions in
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Fig. 2. Percentage change in NOy, VOC, BC, CO, SO, and OC emissions after applying the COVID-19 adjustment factors in the CAMS v4.2 global anthropogenic
emissions inventory over the areas of North America, Europe, Eastern Asia, and South Asia in 2020.
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emissions from the industrial sector (Fig. 1 and S2). This aligns with
reported CO declines of 5-10 % during the lockdown period (April to
May 2020) compared to pre-lockdown levels (March 2020) in regions
with significant human activity, including North America (Pathak et al.,
2023). On the other hand, in Europe NOy emissions are the most affected
with annual average reductions of 12.5 % due to large reductions in
transport emissions. Among the other regions, the largest reductions in
pollutant emissions were observed in Latin America and the Caribbean,
where aVOCs decreased by 22 % on annual average, while other pol-
lutants decreased by 9 % (OC and SOy; Table 1) to ~17 % (NOx and CO;
Table 1), as significant reductions in these pollutants were observed in
large cities such as Buenos Aires, Lima, Rio de Janeiro, Sao Paolo,
Mexico City, and Bogota (Poullain et al., 2022; Kutralam-Muniasamy
et al., 2021; Pardo Amaya and Samuel, 2022; Rodriguez-Urrego and
Rodriguez-Urrego, 2020) (Table 1). In the Middle East, most pollutants
decreased by about 13 % except for SOy (6 %; Table 1), which is
consistent with the reduction of 4 % reported by Amritha et al. (2024).
In the Asia-Pacific developed region, pollutant emissions decreased by
9-13 %, while in the remaining regions (i.e., Africa, Eurasia, and
Southeast Asia and developing Pacific), the annual average pollutant
emission reductions are less than 10 % (Table 1) with the lowest re-
ductions occurring in Africa.

3. Model description
3.1. Atmospheric chemistry model

In this study, the ECHAMS5/MESSy Atmospheric Chemistry model
(EMAQC) is used, which is a global chemistry-climate model that de-
scribes lower and middle atmosphere processes and their interaction
with oceans, land, and human influences (Jockel et al., 2005). The Eu-
ropean Center Hamburg (ECHAMS5) general circulation model
(Roeckner et al., 2006) is used as the atmospheric dynamical core to
describe the atmospheric flow. The Modular Earth Submodel System
(MESSy2) links the core model with sub-models that simulate gas-phase
chemistry (MECCA; Sanap, 1994), inorganic aerosol microphysics
(GMXe; Pringle et al., 2010), organic aerosol formation and growth
(ORACLE; Tsimpidi et al., 2014), aerosol optical properties (AEROPT;
Lauer et al., 2007), cloud microphysics (CLOUD; Jockel et al., 2005), dry
deposition and sedimentation (DRYDEP, SEDI; Kerkweg et al., 2006),
and cloud scavenging (SCAV; Tost et al., 2006). In this study, we
employed the EMAC model at a T63L31 resolution, corresponding to a
horizontal grid spacing of approximately 1.875° x 1.875° and 31 ver-
tical levels extending up to 10 hPa (~30 km altitude). The analysis
presented here focuses on the surface level, which in the model corre-
sponds to a layer extending up to approximately 67 m above ground
level. EMAC is applied for 2 years, covering the period 2019-2020 in the
lower troposphere, with 2019 used solely as the spin-up period. The
model simulations are nudged towards meteorology using ERA5 data
(Hersbach et al., 2020), ensuring meteorological consistency across both
scenarios and isolating the impact of emission changes.

3.2. Organic aerosol formation

The ORACLE module (Tsimpidi et al., 2014, 2024) is employed to
simulate the organic aerosol composition and evolution in the atmo-
sphere based on the volatility basis set framework (VBS). It calculates
the contribution of low volatility (LVOCs), semivolatile (SVOCs), inter-
mediate volatility (IVOCs), and volatile organic compounds (VOCs) to
the formation of POA and SOA by considering their gas-phase photo-
chemical reactions that change their volatility and assuming bulk
equilibrium between the gas and particulate phases. Rather than
tracking individual compounds, ORACLE groups organics into volatility
bins defined by their effective saturation concentration (C*). LVOCs (C*
< 0.32 pg/m?) are extremely low-volatility compounds such as large
multifunctional oxidation products. SVOCs (0.32 < G* < 320 pg/m®)
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include compounds like long-chain alkanes and oxygenated aromatics.
IVOCs (320 < C* < 3.2 x 10° pg/m®) typically include branched al-
kanes, cycloalkanes, and polycyclic aromatics. VOGs (C* > 0.32 x 10°
ng/m?) are represented by isoprene, terpenes, sesquiterpenes, as well as
medium-chain alkanes, olefins, and aromatics.

POA are formed from the phase partitioning of LVOC and SVOC
emissions from open biomass burning and fuel combustion sources. Gas-
phase photochemical reactions that modify the volatility of the organics
are considered, and the oxidation products of each group of precursors
(SVOCs, IVOCs, and VOCs) can partition to the aerosol phase by
assuming bulk equilibrium forming SOA. The volatilities of SVOCs and
IVOCs are reduced by a factor of 102 because of the OH reaction with a
rate constant of 2x1071! em® molec ™! s™! and a 15 % increase in mass to
account for two added oxygen atoms (Tsimpidi et al., 2018). LVOCs are
not allowed to participate in photochemical reactions since they are
already in the lowest volatility category. The VOC oxidation results in
products distributed in four volatility categories with effective satura-
tion concentrations of 10°, 10%, 102, and 10° ug m 3. These products are
categorized as (i) anthropogenic and (ii) biogenic SOA. More details
about the ORACLE module and the different aerosol types and chemical
processes simulated by ORACLE in this study can be found in Tsimpidi
et al. (2016).

3.3. Inorganic aerosol thermodynamics

The GMXe submodel simulates both the thermodynamic behavior of
inorganic aerosols and their microphysical evolution, as described by
Pringle et al. (2010). It is based on an enhanced version of the M7
aerosol scheme (Vignati et al., 2004), which represents aerosols using
seven interacting lognormal modes, four hydrophilic and three hydro-
phobic. Within each mode, aerosols are assumed to be internally mixed
(i.e., of uniform composition), but differences in composition are
allowed between modes. The hydrophilic modes span the full-size range
of atmospheric particles, covering nucleation, Aitken, accumulation,
and coarse modes, while the hydrophobic modes represent similar size
classes excluding nucleation. Each aerosol mode is characterized by its
number concentration, mean particle radius, and geometric standard
deviation. While the size boundaries of the modes are fixed, their mean
radius can vary (Pringle et al., 2010).

The gas—aerosol partitioning of inorganic compounds is calculated
using the ISORROPIA-II thermodynamic model (Fountoukis and Nenes,
2007), which accounts for the equilibrium between gas, aerosol, and
solid phases. Aerosols may exist in either a stable state, where salts
precipitate upon saturation, or a metastable state in which aerosols are
always aqueous, and salt precipitation is not considered. While the two
assumptions can lead to differences under low relative humidity,
global-scale comparisons have shown minimal discrepancies across
aerosol components (Karydis et al., 2021; Milousis et al., 2024). This
study adopts the stable state configuration. To capture potential kinetic
limitations in condensation, gas—aerosol partitioning is resolved in two
steps. First, the uptake of condensable gases is estimated under the
assumption of diffusion-limited condensation (Vignati et al., 2004).
Then, ISORROPIA-II adjusts the gas-aerosol distribution assuming
instantaneous thermodynamic equilibrium (Karydis et al., 2016).

3.4. Model evaluation

The EMAC model is widely used and recognized in the literature for
its ability to accurately reproduce various atmospheric parameters,
including organic and inorganic aerosol concentrations and composi-
tions, gas-phase mixing ratios, aerosol optical depth, acid deposition,
cloud properties, and meteorological parameters (Tsimpidi et al., 2017;
Karydis et al., 2017; Pozzer et al., 2022; Milousis et al., 2025a). A
comparison of the model’s performance in estimating surface mass
concentrations of PMj 5 aerosol components is provided in the supple-
mental material (Fig. S7-S10 and Table S1). This comparison utilizes
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observations from several monitoring networks across the Northern
Hemisphere, including East Asia (EANET, The Acid Deposition Moni-
toring Network in East Asia), Europe (EMEP, European Monitoring and
Evaluation Programme), and the USA, covering both urban (EPA-CSN,
U.S. Environmental Protection Agency Chemical Speciation Network)
and rural (IMPROVE, Interagency Monitoring of Protected Visual En-
vironments) locations. IMPROVE primarily consists of rural background
stations located in national parks and remote areas across the United
States, aimed at tracking regional haze and visibility trends (Guevara
et al., 2022). In contrast, EPA focuses on urban sites, capturing aerosol
characteristics in more densely populated and industrialized areas (Lin
et al., 2014). In Europe, EMEP stations include both urban and rural
sites, though the majority used for model evaluation are in rural or
suburban regions (Lu et al., 2024). EANET sites are predominantly rural,
located in less industrialized areas across East and Southeast Asia to
monitor regional background air quality and acid deposition trends
(Zhang et al., 2020).

Sulfate aerosol concentrations are simulated with reasonable accu-
racy (Fig. S7, Table S1). The model underestimates sulfate in East Asia
(NMB = —41 % at EANET), Europe (—20 % at EMEP), and urban North
America (—28 % at EPA), but it overestimates in the rural North America
(NMB = 94 % at IMPROVE). Nitrate aerosol is significantly over-
estimated, particularly in rural locations (Fig. S8, Table S1). At
IMPROVE sites, the model yields an NMB of +502 %, while the over-
estimation is more moderate at EPA (+11 %) and EANET (+61 %). This
bias likely reflects both known measurement uncertainties, such as
volatilization losses of NH4NO3 from filters, and model limitations,
including coarse grid resolution and simplified N2Os hydrolysis pa-
rameterizations (Milousis et al., 2025b). Ammonium aerosol is also
overpredicted, with NMB values of +153 % at IMPROVE and +32 % at
EANET (Fig. S9, Table S1), consistent with the nitrate bias and un-
certainties in NHg emissions (Wang et al., 2025). Organic aerosols (OA)
are systematically underpredicted across all networks. The largest bias is
seen in the EPA urban dataset (NMB = —50 %), followed by EMEP (—39
%) and EANET (—38 %). This underestimation (Fig. S10, Table S1) has
been linked to the absence of detailed biomass burning emissions and
associated SOA formation pathways in the model (Tsimpidi et al., 2024).
Root Mean Square Error (RMSE) values further highlight model uncer-
tainty, especially for nitrate, with RMSEs of 0.8 pg m~> (EPA), 2.81 pg
m3 (IMPROVE), and 2.08 pg m~3 (EANET). These elevated RMSE
values reflect the greater variability and challenges in reproducing ni-
trate dynamics, particularly in rural and colder regions (Table S1).

Overall, the model captures the spatial and temporal variability of
inorganic aerosols relatively well, particularly sulfate. However, it ex-
hibits a consistent tendency to overestimate nitrate and ammonium and
underestimate OA, patterns consistent with previous EMAC evaluations.
These biases are attributed to both observational artifacts and missing
processes, such as nighttime oxidation of biomass burning emissions,
especially over Europe (Tsimpidi et al, 2024). A more detailed

Table 2
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evaluation of EMAC performance is provided in Tsimpidi et al. (2024).

4. Impact of emission changes on atmospheric trace gases
during the COVID-19 pandemic

4.1. Nitrogen oxides

The simulated BAU global average surface concentration of NOx is
0.3 ppb (1.1 ppb over land). Eastern and South Asia exhibit the highest
regional annual average surface concentrations (~3 ppb), while the
lowest levels are simulated over Eurasia (0.5 ppb). Under the CONFORM
scenario, global average NOx concentrations decrease by 0.05 ppb (5 %;
Fig. S3; Table 2) over land, consistent with the findings of Keller et al.
(2021). In February, Eastern Asia experiences a significant NOx con-
centration reduction of 1 ppb (25 %) (Fig. 3b and c), primarily due to
substantial emission decreases from transportation (40 %) and industry
(30 %) (Fig. 1 and S1), which is comparable to the 27 % decrease re-
ported by Zheng et el. (2021). This represents the highest reduction of
the year for the region, although global average reductions during
February remain the lowest (0.08 ppb or 5 %) as emissions elsewhere are
largely like BAU levels. By April, lockdown enforcement worldwide
leads to the highest global average NOx concentration reduction of the
year (0.12 ppb or 12 %), despite a rebound in Eastern Asia due to
increased industrial production and shipping activities (Fig. S1 and S2).
Additional factors such as elevated residential sector emissions (Venter
et al., 2020) and shifts in transportation patterns (Chang et al., 2021)
may have further contributed to this regional increase. Over Eastern
Asia, NOx concentrations decline only during February and March
before gradually rising, peaking with a 10 % increase in November
(Fig. 3b and f), a rebound effect also noted by Niu et al. (2022) for NOg
emissions in China. In Southern Asia, NOx concentrations slightly in-
crease (3 %) in December but remain below BAU levels for most of the
year, with a maximum reduction of 27 % in April. This is consistent with
the findings of Gopikrishnan et al. (2022), who observed a 21-36 %
reduction in NO; levels across several Indian cities, followed by a sub-
sequent increase in concentrations after the lockdown period. Europe
experiences the steepest NOy concentration decline, with a 31 %
reduction in April (Fig. 3b and d), consistent with findings by Sekiya
et al. (2023) and Deroubaix et al. (2021). This result also closely aligns
with the 33 % average reduction reported for Europe by Keller et al.
(2021). On an annual average in Europe, NOy concentrations decrease
by 10 % compared to BAU (Table 2). Significant annual reductions of
around 10 % are also observed over Latin America, notably in major
urban areas such as Sao Paulo and Mexico City, as well as in the
Caribbean and the Middle East (Fig. 3d), whereas smaller reductions
occur over Africa and Eurasia (3 %). North America experienced an
annual decrease around 6 % (Table 2), with the highest reduction in
April (14 %), particularly in the northeastern US (Fig. 3d).

Percentage monthly and annual difference (%) of gas pollutant concentrations between COVID-19 and BAU scenario during the year 2020. A negative result indicates a

decrease during COVID-19.

03 NOy SO,

Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann.
North America —-0.2 -1.5 -0.7 0.2 -0.6 -0.4 —14 -3.2 -10.9 —-6.3 —-4.0 -10.4 -3.2 3.3 -3.0
Europe -0.2 -16 -1.1 24 -03 -0.3 -30.8 -46 -129 -9.6 -0.8 -146 -6.8 -92 -73
Eastern Asia 40 -21 -07 -30 -11 -253 0.9 2.2 10.3 0.1 -135 2.7 8.7 10.8 5.1
Southern Asia -02 -34 -15 -05 -14 0.5 -27.3 -10.4 -3.0 -8.1 01 -207 -7.8 -1.0 -58
Eurasia —-0.1 -1.7 -0.7 0.3 -0.6 -0.8 -8.8 -1.3 -5.8 -3.0 -0.8 —-19.1 -6.0 —11.0 -7.9
South-East Asia and Developing -03 -26 -16 -08 -14 -0.9 -9.3 -5.8 -3.8 —4.8 -19 -11.8 5.1 47 =31

Pacific

Asia-Pacific Developed 0.0 -1.2 -1.3 -0.8 -0.9 0.1 —4.2 -3.3 —-1.4 —-2.4 0.7 —-13.1 —-6.3 -1.5 —4.3
Middle East -02 -33 -16 -09 -14 00 -20.8 -10.9 -8.0 -9.8 -01 -11.3 -46 -38 49
Africa -02 -22 -11 -07 -1.0 -0.1 -9.8 -4.1 -1.5 -33 -0.2 -71 -16 -1.7 -23
Latin America & Caribbean -01 -26 -18 -11 -14 -01 -19.2 -16.8 -72 -103 -07 -138 -78 -28 -57
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Fig. 3. (a) Annual average NOy concentration (ppb) in the BAU scenario, (b) monthly average NOy concentration change (%) during 2020 at specific locations and
monthly average spatial NOy concentration change (ppb) in (c) February, (d) April, (e) July and (f) November between BAU and COVID-19 and scenario; a negative
change (blue) corresponds to a decrease in NOy concentration during COVID-19. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
4.2. Ozone highest annual average surface concentration of O3 (61.1 ppb), followed
by the Middle East (59.1 ppb), while the lowest O3 concentrations are
simulated over the Asia-Pacific Developed region (33.3 ppb annual
average). For North America, Europe, and East Asia the annual surface

The BAU simulated global annual average surface concentration of
O3 is 36.6 ppb (42 ppb over land). The area of Southern Asia has the
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Fig. 4. (a) Annual average O3 concentration (ppb) in the BAU scenario, (b) monthly average O3 concentration change (%) during 2020 at specific locations and
monthly average spatial O3 concentration change (ppb) in (c) February, (d) April, (e) July and (f) November between BAU and COVID-19 and scenario; a negative
change (blue) corresponds to a decrease in O3 concentration during COVID-19. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)

simulation scenario), the simulated global annual average O3 concen-
tration over land decreased by 0.3 ppb (0.8 %; Fig. S3). The largest
decrease was simulated in the month of May (—1.2 ppb, or 2.5 %), while
in February the global average O3 concentration was increased by 0.04

concentrations are 40.2 ppb, 37.8 ppb, and 49.8 ppb, respectively
(Fig. 4a).

Using the CONFORM emission adjustment factors to account for
emission changes during the COVID-19 pandemic (CONFORM
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Fig. 5. (a) Annual average SO, concentration (ppb) in the BAU scenario, (b) monthly average SO, concentration change (%) during 2020 at specific locations and
monthly average spatial SO, concentration change (ppb) in (c¢) February, (d) April, (e) July and (f) November between BAU and COVID-19 and scenario; a negative
change (blue) corresponds to a decrease in SO, concentration during COVID-19. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

ppb (0.2 %). During February, changes in O3 precursor emissions are characterized by high NOy concentrations. In such NOy-saturated envi-

minimal around the world, except for Eastern Asia, where the first
lockdowns were enforced to prevent the spread of the new pandemic
(Fig. 4b; Table 2). The densely populated urban areas of Eastern Asia are

ronments (i.e., low VOC/NOy ratio), the drastic reduction in NOyx
emissions can lead to a decrease in Og titration and thus an increase in
O3 concentration (Fig. S4). The simulated O3 concentration over Eastern
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Fig. 6. (a) Annual average PM; s-Sulfate concentration (pg m~%) in the BAU scenario, (b) monthly average PM, s-Sulfate concentration change (%) during 2020 at
specific locations and monthly average spatial PM s-Sulfate concentration change (pg m~3)in (¢) February, (d) April, (e) July and (f) November between BAU and
COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM, s-Sulfate concentration during COVID-19. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

10



A.T. Koumparos et al.

Table 3

Atmospheric Environment: X 27 (2025) 100361

Percentage monthly and annual difference (%) of inorganic aerosol pollutant concentrations between COVID-19 and BAU scenario during the year 2020. A negative

result indicates a decrease during COVID-19.

Sulfate Nitrate Ammonium

Feb. Apr. Jul. Nowv. Ann. Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann.
North America -5.1 -5.2 0.0 5.5 0.6 -25 -108 -13 -46 -44 -3.6 112 -1.7 -28 -25
Europe -1.2 -93 56 32 —45 -08 -266 -7.4 -87 -94 -0.8 -247 -86 —-6.8 86
Eastern Asia —-6.1 -3.1 3.0 6.4 1.5 -14.6 -1.0 2.4 1.1 -0.9 -11.9 —-4.6 4.3 2.9 0.0
Southern Asia -0.3 -16.8 -5.9 0.7 —-4.3 0.2 -19.0 -8.3 —-2.4 —-6.1 0.0 -33.2 -10.1 -1.2 —-8.2
Eurasia -1.0 -132 -26 -68 —-49 -1.3 -125 -15 -33 -33 -1.1 -19.2 -37 -47 -6.1
South-East Asia and Developing Pacific -2.0 -9.6 —-3.4 2.5 -2.7 -2.1 -13.8 -2.3 0.7 -3.6 —-2.2 -12.0 -5.7 2.0 —4.3
Asia-Pacific Developed 0.3 -10.1 —4.3 —2.2 -39 -0.5 -1.2 -3.3 -0.2 -1.9 1.8 11.6 -0.5 -0.9 2.0
Middle East -04 -116 -5.0 -22 -41 -0.4 -6.0 -25 3.1 -0.8 -0.5 -27.3 -99 -38 -84
Africa -0.5 -87 -25 -11 -3.0 -0.2 00 -06 -1.0 -06 -0.5 122 -36 23 -47
Latin America & Caribbean -0.5 -11.6 —6.2 —-2.4 —-4.7 -0.1 —6.0 -7.9 -3.0 —4.5 -0.4 —15.1 -11.0 —-4.9 -7.2

Asia during February is increased by 4 % on a regional average
(Table 2). These findings are consistent with the results of Le et al.
(2020) and Venter et al. (2020) as well as with the results of many field
observations during this period as summarized by Gkatzelis et al.
(2021a). Increases in Os concentrations are also evident after April,
when lockdowns began to be enforced, in several polluted regions of
central Europe, consistent with the findings of Cuesta et al. (2022),
northeastern US and California, in agreement with Campbell et al.
(1994) and Wang et al. (2024) (Fig. 4d). Similar increases are observed
in Latin America, particularly in Sao Paulo (Fig. 4d and e), in South
Africa (Fig. 4d and e; Keller et al., 2021), and in Southern Asia, espe-
cially in New Delhi (Fig. 4e and f), consistent with the findings of
Gopikrishnan et al. (2022). However, the largest Os increases are
simulated in November and December (Figs. S5 and 4b) by 2.4 % and
3.4 %, respectively, over Europe and by 0.2 % and 0.8 %, respectively,
over North America, when the lockdowns were reinforced to combat the
second wave of the pandemic, and the winter NOx-saturated conditions
further favor the increase of O3 after the reduction of NOy emissions
(Fig. S4). On the other hand, over areas with higher VOC/NOx ratios (e.
g., NOx-limited rural environments) a decrease in NOx emissions can
lead to a decrease in O3 concentrations (Fig. S4). Simulated regional
annual average O3 concentrations decreased by up to 1.4 % in Southern
Asia (1 ppb), South-East Asia and Developing Pacific (0.7 ppb), Latin
America and the Caribbean (0.5 ppb), and the Middle East (0.9 ppb). In
Southern Asia, the largest decrease (2.5 ppb, or 3.4 %) is simulated in
April, in agreement with Gaubert et al. (2021) and Huang et al. (2021),
and the smallest decrease (0.2 ppb, or 0.5 %) is simulated in October and
November.

4.3. Sulfur dioxide

The global annual average SO, concentration is 0.24 ppb (0.65 ppb
over land), with the highest concentrations simulated over the densely
populated areas of Eastern and Southern Asia (2.72 ppb regional
average; Fig. 5a). On the other hand, North America has the lowest
regional average SOy concentration of 0.15 ppb due to the drastic
reduction of its emissions over the last 40 years.

According to the CONFORM simulation scenario, the global annual
average SO, concentration over land decreases by 4 % (Fig. S3), which is
in line with the 2 % decline observed by Amritha et al. during the
April-May 2020 period. The main sources of SO, are emissions from
industry and the energy sector. Industrial activity was severely affected
during the quarantine period, while the energy sector was least affected
by the closures during the COVID-19 pandemic, as the reduction in
energy demand from commercial buildings was offset by an increase in
demand from households (Zheng et al., 2021). Nevertheless, global
average SO, emissions were reduced by 12 % in April, following large
SO, reductions in most locations except East Asia (Fig. 5b and d;
Table 2). An increasing effect dominates East Asia after April, with the
highest increase in September (14.3 %; Fig. 5b). A similar effect is
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reported by Zheng et al. (2020) and Liu et al. (2020). Increased indus-
trial production and shipping are the main reasons for this
post-quarantine recovery (Fig. 1 and S1; Fig. 5b and d). The most sig-
nificant SO, decrease occurs over Southern Asia and Eurasia during
April (20 %), confirming the results of Amritha et al. (2024) and Sekiya
et al. (2023). Meanwhile, the Middle East and Latin America and the
Caribbean experience a significant decrease in April (11-14 %). The SO4
reduction over South Asia tapers off after April, reaching BAU levels by
the end of the summer. The only regions that continue to show signifi-
cant SO, reductions until the end of the year (around 10 %) are Europe
(Fig. 5b) and Eurasia (Table 2). In the remaining regions, SO, concen-
trations after November are in the range of BAU levels (e.g., Africa,
developed Asia-Pacific) or even higher (e.g., East Asia, North America).

5. Impact of emission changes on atmospheric aerosols during
the COVID-19 pandemic

5.1. Sulfate

The global average surface concentration of sulfate aerosol is 0.33 g
m~3 (0.7 pg m~3 over land). Sulfate concentrations peak over Southern
Asia (regional average of 3 ug m~>), followed by the Middle East (2.4 pg
m~%) and Eastern Asia (1.9 ng m~3). On the contrary, the lowest con-
centrations are calculated over North America (0.2 pg m_3) due to the
strong reduction of SO, emissions as discussed in section 4.3. The global
annual average sulfate concentration over land decreased by 3 %
(Fig. S3) after considering the emission reduction due to the lockdowns
in 2020. Following the changes in SO2 concentrations, sulfate decreases
by 17 % over Eastern Asia in February. Since North America is affected
by the long-range transport of gas-phase pollutants from Eastern Asia
(Jaffe et al., 1999; Karydis et al., 2012; Lin et al., 2014), the sulfate
concentration over North America also decreases during February, even
though the local authorities have not yet imposed lockdowns (Fig. 6b,
Table 3). After the global spread of COVID-19, sulfate concentrations
begin to decrease in each region, reaching a maximum global average
decrease of 9 % (—0.1 pg m ) in April. During April, the largest
decrease is simulated over Southern Asia (17 % regional average), while
the smallest decrease is simulated over Eastern Asia (3 % regional
average), as sulfate increases in many parts of Eastern Asia due to the
increase in Industrial emissions and shipping (Fig. 6b and d, Fig. 1 and
S1). Le et al. (2020) also report that an induced reduction in NOy
emissions has led to an increase in sulfate aerosol over China. The in-
crease in sulfate over Eastern Asia intensifies towards the end of the year
(reaching 6 % in November), leading to an increase in sulfate in regions
affected by transported pollution (e.g., Southeast Asia and developing
Pacific, North America; Fig. 6 and Table 3). Over Europe, sulfate de-
creases significantly during the first phase of the pandemic (9 % in
April), in accordance with Sekiya et al. (2023), but only slightly during
the second phase (3 % in November) despite the strong decrease in SO»
(section 4.3), mainly due to increased precipitation and reduced
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Fig. 7. (a) Annual average PM; s-Nitrate concentration (ug m~?) in the BAU scenario, (b) monthly average PM, s-Nitrate concentration change (%) during 2020 at
specific locations and monthly average spatial PM, s-Nitrate concentration change (g m ) in (¢) February, (d) April, (e) July and (f) November between BAU and
COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM, s-Nitrate concentration during COVID-19. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 8. (a) Annual average PM, s-Ammonium concentration (pg m~2) in the BAU scenario, (b) monthly average PM, s-Ammonium concentration change (%) during
2020 at specific locations and monthly average spatial PM s-Ammonium concentration change (ug m~3) in (c) February, (d) April, (e) July and (f) November
between BAU and COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM; s-Ammonium concentration during COVID-19. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

aligns with Wang et al. (2024), who emphasized heterogeneous chem-

photochemistry. In addition, the increased O3 concentrations and other
istry, especially under humid and polluted conditions, as a significant

atmospheric oxidants (e.g., OH~, Hy0,) during November (see section
4.1) accelerated the gaseous and aqueous phase production of H3SO4, contributor to sulfate formation.
which compensated for the decreased SO, emissions (Fig. S5). This
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Fig. 9. (a) Annual average PM;5-POA concentration (g m~?) in the BAU scenario, (b) monthly average PM; s-POA concentration change (%) during 2020 at
specific locations and monthly average spatial PM, s-POA concentration change (ug m~%) in (¢) February, (d) April, (e) July and (f) November between BAU and
COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM, 5-POA concentration during COVID-19. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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Table 4

Atmospheric Environment: X 27 (2025) 100361

Percentage monthly and annual difference (%) of anthropogenic organic aerosol pollutant concentrations between COVID-19 and BAU scenario during the year 2020.

A negative result indicates a decrease during COVID-19.

POA SOA from S/IVOC SOA from VOC

Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann. Feb. Apr. Jul. Nov. Ann.
North America —-4.7 -13.0 -5.1 -2.3 -5.1 —6.2 -8.5 —2.2 2.0 -2.3 -5.4 -10.6 —4.5 1.9 —-3.4
Europe -0.3 —23.6 -39 —-8.2 -7.8 -1.8 -17.3 -3.5 -3.8 —5.6 -2.1 -19.5 -5.8 —-4.7 -7.0
Eastern Asia -15.0 —4.3 2.0 0.5 -1.7 -5.9 —-4.7 2.1 -1.2 -1.1 —6.6 -4.9 2.8 1.3 -0.2
Southern Asia 0.1 —24.2 —-12.2 —-2.4 -8.3 -0.2 -17.8 -8.1 -2.9 —6.4 -0.2 —20.1 -9.2 -2.9 -7.2
Eurasia -1.9 —18.5 -0.1 -5.3 -5.3 -1.6 -13.2 1.0 —-3.4 -3.8 -1.4 —15.0 -1.1 —-3.4 —4.6
South-East Asia and Developing Pacific -1.6 -9.7 -2.8 -0.1 -3.2 -1.9 -8.5 —-3.4 -0.5 -3.3 -1.8 -8.9 —4.6 0.7 -3.5
Asia-Pacific Developed 0.7 —-15.4 -1.8 -7.5 -5.8 0.5 -8.8 —-2.4 -3.1 -3.6 0.3 —-9.1 —4.2 —-2.6 —4.1
Middle East -0.3 -19.9 -9.2 -4.3 -7.9 -0.7 -12.4 —5.4 —-2.8 -4.7 -0.8 -18.0 -8.9 —4.6 -7.3
Africa -0.3 -10.8 -2.7 -2.0 -3.3 -0.5 -9.5 —2.4 -1.8 -3.1 —0.6 -11.2 —4.1 -2.9 —4.3
Latin America & Caribbean -0.3 —-14.8 -11.9 —-5.2 -7.9 -0.4 -11.3 -8.0 -3.5 -5.7 -0.4 —-14.8 -10.9 —-5.2 -7.7

5.2. Nitrate

The simulated global annual average surface nitrate aerosol con-
centration is 0.4 pg m > (0.8 pg m~° over land). The highest regional
average concentrations are simulated over Eastern Asia (3.6 pg m’3) and
Southern Asia (3 pg m~°). Following the sharp reduction in NOy emis-
sions during the 2020 lockdowns (Section 2.3), global annual average
nitrate concentrations over land decreased by 3 % (Fig. S3). Over
Eastern Asia, nitrate decreases by 15 % in February and 1 % in April,
before increasing again relative to BAU levels, peaking at a 2.5 % in-
crease in summer (Fig. 7b, Table 3). The largest decrease in nitrate
concentrations is simulated over Europe (27 % in April; Fig. 7; Table 3).
Over Europe in BAU, the fraction of total nitric acid present in the
aerosol phase is high (annual average of 83 %,; Fig. S6) due to the high
availability of NHj in the region. Therefore, the strong reduction of NOy
emissions (35 % in April) has a direct impact on nitrate aerosol forma-
tion in the region. The annual average reduction of nitrate in Europe is
about 10 %. For the same reasons, nitrate is also significantly reduced
over Southern Asia (6 % annual average) with a peak reduction of 19 %
in April. On the other hand, nitrate reduction is low in areas where ni-
trate formation is limited by the availability of NH3 (e.g., North Amer-
ica) and the high temperatures (e.g., Middle East) (Fig. S6; Table 3).
Nitrate reduction is also low in areas where NOy emission reduction is
weak (e.g., Africa; Table 3). Furthermore, the increased oxidizing ca-
pacity due to NOy reduction, could also lead to a relative increase in
secondary aerosols, such as nitrate, within the aerosol composition (Liu
et al., 2021b; Tian et al., 2021).

5.3. Ammonium

The simulated annual average surface concentration of ammonium
aerosol is 0.1 pg m~> (0.35 pg m~> over land). The highest ammonium
concentrations are simulated over Southern and Eastern Asia (1.7 and
1.5 pg m 3, respectively). Although NH; emissions are not as affected by
the 2020 lockdowns, in some cases an increase occurred due to the
agricultural sector (Kuttippurath et al., 2024). The reduction in SO, and
NOy emissions affects the partitioning of NH3 into the aerosol phase,
resulting in a global annual decrease in continental ammonium con-
centrations of 4.5 % (Fig. S3). Viatte et al. (2023) attributed the decline
to reduced emissions of NH3 and NOy from industrial activities and
transportation. The largest annual reduction of ammonium is simulated
over Europe (9 %) with a peak of 25 % in April (Fig. 8b, Table 3). Over
Southern Asia, ammonium is reduced by 33 % in April, but the reduction
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weakens by the end of the year (1 %) due to the slight increase in sulfuric
acid (section 5.1). The ammonium reduction is also significant over the
Middle East (8 % annually) due to the significant reduction of sulfate in
the region (Table 3). On the other hand, the reduction of ammonium in
North America is weak, especially in the western USA (Fig. 8). Following
the changes in sulfate and nitrate concentrations, ammonium decreases
over East Asia in February (12 %) and April (5 %) and increases there-
after (Table 3).

5.4. POA and SOA from anthropogenic SVOC and IVOC

The global annual average surface concentration of POA and SOA
from anthropogenic S/IVOC emissions is 0.05 pg m (0.2 ug m~3 over
land) and 0.1 pg m~3 (0.3 pg m~2 over land), respectively, with peaks
over the regions of Southern Asia (1.2 pg m~ POA and 2.4 pg m~> SOA
regional average) and Eastern Asia (1.1 pg m~> POA and 0.7 pg m ™~ SOA
regional average). After application of the CONFORM emission adjust-
ment factors, the global annual average POA and SOA from S/IVOC
emissions over land are reduced by 5 % and 3.5 %, respectively (Fig. S3).
Over Eastern Asia, POA concentrations decrease by 15 % in February
and 4 % in April, and then increase, following the emission trends
(Fig. 9; Table 4). SOA concentrations in Eastern Asia decrease by 6 % in
February and 5 % in April and increase by 4 % in summer (Fig. 10;
Table 4). However, in contrast to POA, SOA concentrations decrease
again from BAU levels after October, despite the increase in S/IVOC
emissions. This slight decrease is related to the lower atmospheric
oxidant levels during this period, as discussed in section 4 (Fig. S5),
which led to less efficient oxidation of the emitted S/IVOC and subse-
quent reduced SOA production. In April, POA and SOA concentrations
decreased globally, with large decreases over Southern Asia and Europe
(24 % for POA and 18 % for SOA) and over the Middle East (20 % for
POA and 12 % for SOA) (Figs. 9 and 10, Table 4). Over Europe, POA and
SOA reductions are small during the summer (4 % for both), and POA
reductions become important again after November (8 %) during the
second wave of the pandemic. However, the SOA reduction in November
remains small (4 %), because of the dramatic increase in oxidant levels
(Fig. S5). On the other hand, over Africa, POA and SOA concentrations
over densely populated areas (e.g., Nigeria, and South Africa) increase
slightly relative to BAU levels after July (Table 4) mainly due to increase
in S/IVOC emissions from the residential sector (Fig. S2), consistent with
the results of Han et al. (2024).
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(b) SOA from S/I-VOC Change
in COVID-19 scenario
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Fig. 10. (a) Annual average PM, 5-SOA concentration (ug m~>) from anthropogenic SVOC and IVOC emissions in the BAU scenario, (b) monthly average PMj 5-SOA
concentration change (%) during 2020 at specific locations and monthly average spatial PM, 5-SOA concentration change (ug m~3)in (¢) February, (d) April, (e) July
and (f) November between BAU and COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM, 5-SOA concentration during COVID-19. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

5.5. SOA from anthropogenic VOCs

The global annual average surface concentration of SOA from
anthropogenic VOC emissions is 0.2 pg m~> (0.5 pg m~> over land). The
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area of Southern Asia has the highest average surface concentration (3.5
ng m~3), followed by South-East Asia and the Developing Pacific (1.6 jig
m~?) and Eastern Asia (1.7 pg m~>). The lowest average concentration
belongs to Asia-Pacific Developed (0.1 pg m™3), followed by North
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Fig. 11. (a) Annual average PM,5-SOA concentration (ug m~°>) from anthropogenic VOC emissions in the BAU scenario, (b) monthly average PMj5-SOA con-
centration change (%) during 2020 at specific locations and monthly average spatial PM, 5-SOA concentration change (pg m~%) in (¢) February, (d) April, (e) July
and (f) November between BAU and COVID-19 and scenario; a negative change (blue) corresponds to a decrease in PM, 5-SOA concentration during COVID-19. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

America and Eurasia (0.2 pg m°). After applying the CONFORM calculated in April (20 %; Fig. 11b, Table 4). In addition, the smallest

emission adjustment factors, the global annual average SOA concen- decrease was calculated in November (3 %; Fig. 11b and f). In Europe,
trations from anthropogenic VOCs over land are reduced by 4.5 % the largest decrease occurred in April (20 %; Fig. 11b), while the
(Fig. S8). In Southern Asia, the largest decrease relative to BAU was smallest decrease was calculated in October (3 %; Fig. 11, Table 4), as
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Fig. 12. (a) Annual average total PM 5 concentration (ug m~?) in the BAU scenario, (b) monthly average PM, s concentration change (%) during 2020 at specific
locations and monthly average spatial PM, 5 concentration change (ug m~3) in (¢) February, (d) April, (e) July and (f) November between BAU and COVID-19 and
scenario; a negative change (blue) corresponds to a decrease in PM, 5 concentration during COVID-19. (For interpretation of the references to colour in this figure

legend, the reader is referred to the Web version of this article.)

oxidant levels increased (Fig. S5). In both continents, SOA reduction
events became less pronounced after the summer months due to the
interruption of the quarantine measures and began to occur again
around November-December. In North America, the largest decrease
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occurred in April and May (11 % and 9 %, respectively), while the
largest increase occurred in December (5 %), the month in which
oxidant concentrations also increased (Fig. S5). After May, the
decreasing effects were less pronounced until the increasing effect after
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Table 5

Percentage monthly and annual difference (%) of total fine particulate matter
concentrations between COVID-19 and BAU scenario during the year 2020. A
negative result indicates a decrease during COVID-19.

PMy5

Feb. Apr. Jul. Nov. Ann.
North America -2.7 -5.9 -0.7 0.1 -1.4
Europe -0.8 —15.4 —4.2 -5.5 —5.4
Eastern Asia -9.1 -0.5 1.8 2.2 -0.1
Southern Asia 0.0 -11.1 -5.7 -1.6 -4.0
Eurasia -1.0 -8.4 -1.1 -3.7 -2.8
South-East Asia and Developing Pacific -1.4 —6.1 -2.6 0.7 -2.2
Asia-Pacific Developed 0.0 -15 -1.3 -0.4 -0.6
Middle East -0.2 -4.2 -2.1 -1.5 -1.9
Africa -0.1 -3.1 -1.0 -0.5 -1.0
Latin America & Caribbean -0.2 —5.7 -39 -1.7 -2.6

October. In Eastern Asia the largest decrease was during February (7 %),
while after May, increasing results were calculated until the end of the
year (Fig. 11). The largest increase in Eastern Asia was in September (6
%). Tian et al. (2021) also reported that in China the increase in O3 and
NOj radicals during the lockdown promoted SOA formation. Latin
America and the Caribbean also experienced significant declines, with a
global annual decline of approximately 8 %. It is important to note that
the model does not include emissions from cooking and volatile chem-
ical products (VCPs) emissions. Recent studies have identified these
sources as significant emerging contributors to anthropogenic VOC
emissions, capable of influencing urban atmospheric chemistry
(Stavroulas et al., 2019; Gkatzelis et al., 2021a; Coggon et al., 2021).
Consequently, the omission of these emissions may result in un-
derestimations of modeled SOA concentrations and could potentially
impact the interpretation of pollutant responses to pandemic-related
restrictions presented in this study.

5.6. Total fine particulate matter

The annual average surface concentration of PM, 5 is reported to be
8.1 pgm 3 over land and 3.7 pg m ™3 globally. Eastern and Southern Asia
have the highest average annual concentrations at approximately 20 ug
m 2. The Middle East and Africa also have significant concentrations,
averaging ~16 pg m~>, particularly during the summer months
(Fig. 12b, Table 5). In contrast, North America has the lowest average
concentration at 2.6 pg m~>, followed by Eurasia at 3.2 ug m™~> and the
Asia-Pacific Developed region at 3.4 pg m™°. After applying the
CONFORM emission adjustment factors, the global annual average
PM, 5 concentrations over land decreased by 4 %. In Southern Asia, the
largest monthly reduction was observed in April (11 %;
Fig. 12d-Table 5). Observations from India indicate a decrease in PMj 5
of up to 37 % (March-May 2020) compared to the period 2017-2019
(Kant et al., 2020), while additional studies report PM3 5 declines of
10-20 % across various Indian regions (Patel et al., 2024). The simulated
reductions were less pronounced after April, with the smallest calculated
in October (1 %). In Europe, the largest reduction also occurred in April
(15 %; Fig. 12), which is consistent with the results of Venter et al.
(2020) and Evangeliou et al. (2025) and corresponds to approximately 1
ug m’g, consistent with Hammer et al. (2021). The smallest decrease in
Europe occurred in October (3 %), but reductions intensified after that
month. In North America, the largest reduction occurred in March (6 %),
with levels gradually returning to BAU levels by July (Fig. 12). In East
Asia, the largest decrease in PM; 5 occurred in February (9 %), which is
lower than the 24 % decrease reported by Zheng et al. (2021) for the
same period. On the other hand, September showed the largest increase
(4 %; Fig. 12). Seasonal variations in Eastern Asia showed increasing
concentrations from April to September, followed by a decreasing trend,
culminating in a 2 % decrease in December.
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6. Conclusions

This study explores the global impact of emission changes on at-
mospheric trace gases and aerosols during the COVID-19 pandemic. The
analysis encompasses key gas pollutants (e.g., O3, NOy, SO5), inorganic
aerosols (sulfate, nitrate, ammonium), and organic aerosols, including
primary organic aerosol (POA) and secondary organic aerosols (SOA)
from the oxidation of SVOCs, IVOCs, and VOCs.

Most regions experienced declines in pollutant concentrations during
lockdowns. Eastern Asia saw the steepest declines in February (except
for O3), with subsequent increases in pollutants after spring. SO and
sulfate aerosols registered the largest annual increases (5 % and 1.5 %,
respectively), attributed mainly to industrial activity increases, as indi-
cated by emission activity factors. Additionally, oxidants are critical to
aerosol formation. Therefore, even small increases in oxidants (e.g., O3,
OH, etc.) can substantially influence aerosol concentrations, such as
sulfate and SOA. Europe recorded substantial decreases in secondary
pollutants, especially in April, though O3 saw only a modest annual
average decrease of 0.3 %, due to rising levels in November and
December. PMs 5 (5.5 %) and nitrate aerosols (9.4 %) showed the largest
continental reductions with significant seasonal variability. Pollutant
declines were less pronounced in summer, with a marked rebound in the
autumn, reflecting adjustments in emission factors. Southern Asia, un-
like Europe, did not experience a significant drop in restrictions during
the summer or a second wave in the autumn. After April, when re-
ductions peaked, declines gradually began to fade, with November and
December seeing increases in NOy and sulfate aerosols due to higher
energy demands. Notably, POA and SOA from anthropogenic S/IVOC
emissions saw the greatest annual decreases in Southern Asia (8.3 % and
6.4 %, respectively). North America experienced similar patterns, with
notable decreases in April, moderation in summer, and a return to
higher reductions by autumn. However, increases in December were
evident for O3 (0.8 %), sulfate aerosols (7.4 %), and SOA from anthro-
pogenic S/IVOC (3.6 %) and VOC (5 %). Latin America and the Carib-
bean and the Middle East exhibited significant, mostly declining trends.
Latin America and the Caribbean recorded the largest annual decreases
for O3 (1.4 %), NOy (10.3 %), and SOA (7.7 %), while the Middle East
registered the highest decrease in O3 (1.4 %).

In conclusion, this study highlights the complex and regionally
diverse responses of atmospheric trace gases and aerosols to changes in
emissions during the COVID-19 pandemic. The results reveal the inter-
action between emission reductions and atmospheric chemistry,
providing important insights into the dynamics of air pollution in un-
precedented situations. While the noticeable decreases in pollutants
during lockdowns illustrate the potential of emission reductions to
improve air quality, the subsequent rebound and regional differences
emphasize the temporary nature of these changes. These findings
highlight the importance of implementing sustained, systemic measures
to achieve lasting improvements in air quality.
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