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Abstract. Contrails formed by aircraft in ice supersaturated regions (ISSR) can persist and spread for several hours, evolving

into cirrus which have a net positive effect on global warming. Reducing this contribution could be achieved through on-

purpose flight planning, in particular by avoiding ice supersaturated regions. In this context, a modification to the cloud scheme

of the ARPEGE operational numerical weather prediction (NWP) model is proposed to enable the representation of ISSRs at

cruise altitude. This modification does not require any major algorithmic changes or additional computational effort, and the5

methodology is transferable to similar parameterizations, commonly used in global circulation models.

Humidity forecasts are evaluated using in situ aircraft humidity observations and compared with operational forecasts from

ARPEGE and the Integrated Forecast System (IFS). A sensitivity study on neighborhood tolerance and humidity thresholding

is carried out, enabling a comprehensive comparison between NWP forecasts. It is shown that the modified cloud scheme

allows for supersaturation, significantly improving the representation of humidity with respect to ice, with ISSR discrimination10

skills close to IFS (hit rate∼ 80 % and false alarm ratio∼ 30 % when a neighborhood tolerance of 150 km, i.e. 10 min of flight,

is applied). The spatial correspondence between observations and the modified ARPEGE model is illustrated by a commercial

flight case study. The modelization of ice supersaturation in ARPEGE can therefore be used for further contrail climate impact

applications, together with the associated evaluation methodology, which contributes to the definition of a shared framework

for ISSR verification.15

1 Introduction

Contrails, also known as condensation trails, are high-altitude ice clouds that form when water vapor from fuel combustion is

released by jet engines. When temperatures are low enough and exceed the so-called Schmidt-Appelman criterion (Schumann,

1996), engine emissions lead to the formation of straight cirrus clouds, which are often clearly visible behind aircraft. When

triggered in ice supersaturated regions commonly denoted ISSRs (i.e. relative humidity w.r.t ice RHice > 100 %), the trail can20

spread to form a large cirrus cloud, which can persist for several hours and is clearly visible by satellite (Minnis et al., 1998;

Gierens and Vázquez-Navarro, 2018).

1

https://doi.org/10.5194/egusphere-2025-1499
Preprint. Discussion started: 6 May 2025
c© Author(s) 2025. CC BY 4.0 License.



According to various studies (Lee et al., 2009, 2021), and in view of increasing civil air traffic, these induced cirrus clouds

are likely to contribute significantly and positively to global warming. The effective radiative forcing (ERF) associated to

persistent contrail could be of the same order of magnitude as ERF issued from CO2 emissions of aviation industry, even if25

large uncertainties remain, stemming from various sources, such as our incomplete understanding of contrail cirrus life cycle

and radiative properties (Schumann and Heymsfield, 2017).

The impact of persistent contrails on global warming might be mitigated by optimizing pre-tactical flight paths or by tactical

avoidance of regions where meteorological conditions are likely to be favorable to persistent contrails (Sausen et al., 2023).

Studies by Teoh et al. (2020) suggested that only 2 % of flights could contribute to 80 % of the estimated contrail ERF by using30

algorithmic climate change function (van Manen and Grewe, 2019). Other studies by Matthes et al. (2020) involving climate-

optimization simulations found that the aviation-induced climate impact can be reduced in the range of 50 % at the expense

of 1-2 % additional operational costs. The potential mitigation options at pre-tactical and tactical time scale to reduce climate

impacts require operational weather forecasts, preferably at continental or global scale. These models must be reliable to predict

where contrails may form and persist, which requires sufficient quality on temperature and relative humidity estimates in the35

upper troposphere and lower stratosphere (UTLS) region.

Most global circulation models (GCM) do not properly represent humidity in these regions because the parametrization

of cirrus cloud formation implements saturation adjustment. One of the first operational parametrizations of supersaturation

w.r.t ice in a global NWP model was proposed by Tompkins et al. (2007) and implemented in the Integrated Forecast System

(IFS) of the European Center for Medium-Range Weather Forecasts (ECMWF). Ice supersaturation is parametrized within40

the cloud scheme by modifying the amount of water vapor in the clear-sky portion of the grid-box according to temperature

conditions. However, this scheme is associated with a prognostic cloud fraction description which is non-easily transferable

to many other global circulation models where cloud fraction is diagnosed. In general, obtaining a reliable description of the

ISSR remains a challenge (e.g. Gierens et al., 2020) and very recent works are being done on modified micro-physical schemes

to allow or enhance the description of ISSR (e.g. Sperber and Gierens, 2023; Borella et al., 2024; Seifert, 2024; Thompson45

et al., 2024), making this topic a very active field of research. In the global NWP ARPEGE model of the French national

weather service Météo-France (Bouyssel et al., 2022), cloud fraction is diagnosed and the current saturation adjustment scheme

converts instantaneously any excess of water vapor above ice saturation into ice, which leads to the result that ISSR cannot be

represented.

The growing interest for ISSR forecasting for operational mitigation strategies should also trigger appropriate verification50

methods of NWP models. Most verification studies (e.g. Tompkins et al., 2007; Reutter et al., 2020; Gierens et al., 2020;

Sperber and Gierens, 2023) compared the distribution of temperature and relative humidity to in situ measurements acquired

from the In-service Aircraft for a Global Observing System database (IAGOS - previously named MOZAIC - Marenco et al.,

1998; Petzold et al., 2015). The authors acknowledged that IAGOS offers a relevant reference for characterizing humidity in

the UTLS, especially for contrail applications, and used these observations to exhibit main biases on ISSR in NWP models.55

Pointwise or neighborhood-based binary metrics have also been applied (e.g. Tompkins et al., 2007; Thompson et al., 2024;

Wolf et al., 2025) to evaluate ISSR forecasts discrimination capabilities and compare forecasts against each other. Indeed,
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it is both important to discriminate between the capacity to detect ISSR and also to avoid false alarms, due to the trade-

off of additional CO2 emissions when avoiding an ISSR. These verification methods deserve to be completed to accurately

describe NWP model capabilities. ISSR occurrences are known to be a rather rare phenomenon in the atmosphere with patchy60

structures (Spichtinger and Leschner, 2016) embedded in thin layers close to the cold and humid tropopause (Petzold et al.,

2020), which requires dedicated metrics including spatialization. For this purpose, the use of available information along

IAGOS aircraft flight paths in the verification process seems valuable and adapted to aviation applications. In addition, recent

studies suggested that unreliable forecasts may still have skills to discriminate ISSRs, provided that post-processing calibration

or adapted threshold on relative humidity are applied (Teoh et al., 2022; Wolf et al., 2025). This leads to consider a range of65

different thresholds for ISSR verification for a complete evaluation and comparison of NWP models capabilities. In the end, a

shared framework for the verification of ISSR should be defined, which is an important cornerstone of any strategy for avoiding

areas conducive to the triggering of persistent warming contrails.

The proposed study addresses two major questions related to forecasting high-tropospheric humidity and ISSR. The first

issue is the development of supersaturation in a global NWP model, the ARPEGE global NWP model of Météo-France, by70

modifying its cloud scheme. The second aspect addresses the verification of ISSR forecasts using IAGOS humidity observa-

tions.

The article is structured as follows. Section 2 is dedicated to the modified Smith cloud scheme (Smith, 1990) used in

ARPEGE for allowance of supersaturation with respect to ice. Section 3 is dedicated to the presentation of observational and

forecast datasets used for calibration and verification, and the interpolation methodology. The calibration procedure of the75

modified cloud scheme is presented in Sect. 4. The verification methodology and associated statistical results are presented and

applied in Sect. 5, including a case study. The methodologies and the results presented in this paper are discussed in Sect. 6.

Conclusions and perspectives of this work are given in Sect. 7. All the calculations related to the modification of the ARPEGE

cloud scheme are given in the Appendix.

2 Modified cloud scheme for the ARPEGE model to allow ice supersaturation80

The microphysical scheme used in ARPEGE was first developed by Lopez (2002). It mainly follows the approach proposed in

Fowler et al. (1996), but with a reduced complexity. It is based on a prognostic representation of four condensed water species

(cloud droplets, ice crystals, rain, snow) for large scale and shallow convective clouds, and on a diagnostic representation

for deep convective clouds. A statistical cloud scheme using a symmetrical triangular probability density function (Smith,

1990) provides cloudiness and mean cloud water condensate within a grid-box for large scale clouds, assuming that cloud85

condensation and evaporation are instantaneous and reversible. The width of the probability density function is defined by

a critical relative humidity threshold that decreases with model level height and horizontal resolution. Partitioning between

liquid and ice contents is temperature-dependent, so that the mixed phase lies between 273.15 K and 250 K (more details can

be found in Roehrig et al., 2020). Cloud formation initiates when saturation is locally exceeded within the grid-box, which is

an actual limitation of the ARPEGE cloud scheme as it removes any supersaturation. This hypothesis, validated in the liquid90
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phase, is known to be erroneous in the ice phase, as supersaturation relative to ice is commonly measured by in situ or remote

sensing instruments (e.g. Krämer et al., 2009; Heymsfield et al., 2017). Here, we propose a simple extension of the Smith cloud

scheme implemented in the ARPEGE model to allow ice supersaturation at cruise levels.

2.1 Parametrization of supersaturation w.r.t. ice

The parametrization of supersaturation w.r.t ice in the UTLS is based on the assumption that ice crystals are formed in most95

cases by the homogeneous nucleation process when the temperature is lower than 235 K. We introduce a saturation ratio

coefficient k which is a function of the average temperature in the grid-box T̄ and represents the ratio of saturation to be reached

to have homogeneous nucleation processes activated in the grid-box. For temperatures colder than 235 K, the saturation ratio

coefficient is set such as

k = Ccalib.f(T̄ ), f(T ) = 2.583−T/207.8K (1)100

where f(T ) represents the homogeneous nucleation threshold as a function of T (see e.g. Koop et al., 2000; Kärcher and

Lohmann, 2002; Tompkins et al., 2007; Sperber and Gierens, 2023), and Ccalib is a calibration coefficient used for the tuning

of the model. From 235 K, a linear return is made back to k = 1 at 250 K (k = 1 for T̄ ≥ 250 K). This implies that the range

of temperature where supersaturation is allowed in our study is set for temperatures colder than 250 K collocating with the

pure ice phase limit within ARPEGE microphysical scheme, this range being compatible with persistent contrail applications.105

In higher temperature conditions where mixed-phase or pure liquid conditions can exist, the ARPEGE cloud scheme is not

directly impacted by the modification.

The second step is to write the local thermodynamic adjustment equation to include the saturation ratio coefficient in the

classical scheme. The following assumptions are used:

– when ice supersaturation conditions are allowed (i.e. k>1), condensate can exist within a grid-box for any point where110

the saturation ratio k is locally exceeded.

– once the supersaturation threshold is locally exceeded, local adjustment is instantly obtained back to saturation.

Local equations of the cloud scheme are then given by the following set of equations:

q+
c =





qt− qsat(T,p) qt > k · qsat(T,p),

0 qt ≤ k · qsat(T,p),
(2)

where q+
c is the local condensed content after adjustment, qt is the total specific humidity before adjustment, that is the sum115

of the vapor and the condensate (qv + qc), and qsat(T,p) is the saturation specific humidity w.r.t liquid water or ice before

adjustment at temperature T and pressure p. The symbol "+" denotes that the variable is being diagnosed from the prognostic

variables, which means that the value is obtained after adjustment. Figure 1 provides a graphical representation of Eq. (2). With

the modification of the scheme, the total specific humidity (in blue) must exceed the values of k · qsat (in purple) for a cloud to
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form, while in the operational version, a cloud would form once qsat (in green) is exceeded. Consequently, areas classified as120

cloudy in the operational scheme may be supersaturated with the new scheme.

qsat · k
qsat 

qt

q

ARP-op

ARP-newSupersaturation

GRID-BOX

x

x + Δxx 

Figure 1. Illustration of the variability of qt and qsat inside a NWP model grid-box. In the current ARPEGE model (denoted ARP-op in

green), thermodynamical adjustment is done back to saturation when qt > qsat. In the modified ARPEGE model (denoted ARP-new in

purple), thermodynamical adjustment is done back to saturation when qt > k.qsat, which allows supersaturation.

2.2 Calculation of the mean condensed content and the mean cloud cover

The difference between the modified and the original ARPEGE scheme relies in the introduction of variable k in Eq. (2) to

define the nucleation threshold, and the following consists in reworking the original cloud scheme equations with k > 1. To

calculate the mean condensed content and the mean cloud cover in the grid-box, a statistical description of the distance to125

supersaturation qt− kqsat in the grid-box is used. We introduce the notation x̄ (resp. x′) to represent the grid-box mean value

(resp. the local perturbation) of a variable x. Following the cloud distribution concepts developed by Sommeria and Deardorff

(1977) and Mellor (1977), and assuming that pressure fluctuations are negligible in the grid-box (Bougeault, 1981), the local

difference between qt and kqsat(T,p) can be expressed by

qt− kqsat(T,p) = Qc,k + s, (3)130

where Qc,k characterizes the average distance to supersaturation (k > 1) resp. saturation (k = 1) in the grid-box, such as

Qc,k = aL,k

[
q̄t− kq̄sat(T̄L, p̄)

]
, (4)

and s represents the local deviation around the value of Qc,k and can be described by

s = aL,k [q′t− k bLT ′L] , (5)

with L being the latent heat of condensation, cp the specific heat capacity of air at constant pressure, and TL = T − (L/cp) · qc135

the liquid water temperature which is conserved through the condensation process. The factors aL,k and bL account for changes
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in qsat due to latent heating and are given by

aL,k = (1 + k bLL/cp)−1, (6)

bL = εLq̄sat(T̄L, p̄)/RT̄ 2
L, (7)

where R is the dry air specific gas constant and ε is the ratio of dry air constant and vapor constant.140

The local deviation s is statistically modeled by a centered G-distribution with a standard deviation σs,k such as s∼G[0,σs,k].

This implies that qt− kqsat follows a G-distribution with a mean equal to Qc,k and a standard deviation σs,k which gives

qt− kqsat ∼G[Qc,k,σs,k]. (8)

Note that to keep the framework simple, we have assumed that the nature of the probability distribution is independent of the

value of k. This translates into the fact that the qt− kqsat distributions for different values of k differ from each other by an145

offset and a scaling factor.

The mean cloud fraction after adjustment C+ is given by the integration of qt− kqsat distribution G[Qc,k,σs,k] for positive

values only, which corresponds to the cloudy part of the grid-box. It can be expressed as the integral of the normalized centered

probability distribution G[0,1](t) (see calculations in Appendix A)

C+ =

+∞∫

−Qc,k/σs,k

G[0,1](t)dt. (9)150

The mean cloud water content after adjustment q̄+
c is given by integrating the local content qt− qsat only on the grid-box

cloudy part. In order to get a workable expression, it is assumed that local positive values of qt− kqsat coincide with the

highest qt− qsat values (see calculations in Appendix A), which gives:

q̄+
c = σs,1

+∞∫

−Qc,k/σs,k

G[0,1](t)
(

t +
Qc,1

σs,1

)
dt. (10)

It is important to note that steps from Eq. (2) to Eq. (10) do not depend on the probability distribution that is chosen, hence the155

methodology can be applied to cloud schemes based on the same type of statistical distribution concepts.

2.3 Application to the ARPEGE cloud scheme

The Smith (1990) cloud scheme used in ARPEGE assumes a symmetric triangular probability function for the setting of

the s distribution. Applying this methodology in our context, the probability density function is represented by a symmetric

triangular distribution with a finite support, its lower and upper limits spanning from −
√

6σs,k to
√

6σs,k, as represented in160

Fig. 2. The cloud fraction is non-zero when −Qc,k <
√

6σs,k indicating the presence of condensed water when the critical

point corresponding to−Qc,k =
√

6σs,k is obtained. This equality can be used to define the critical relative humidity threshold

Ūc,k = q̄v/q̄sat(T̄, p̄). Evaluating Qc,k at this critical point where q̄t = q̄v and T̄L = T̄ leads to

σs,k =
aL,k√

6
q̄sat(k− Ūc,k). (11)
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This expression exhibits a direct relation between the width of the distribution σs,k and the critical relative humidity Ūc,k. This165

allows the cloud scheme closure by the definition of a critical relative humidity threshold, as the s distribution is fully deter-

mined by its standard deviation. Defining αk = Qc,k/σs,k

√
6, the integration of Eq. (9) and (10) gives an explicit algorithm

(see Algorithm 1) for the computation of C+ and q̄+
c (see appendix A for calculations). Setting k ≡ 1 returns to original Smith

cloud scheme.

Figure 2. Probability density function G applied for the statistical representation of variability inside the grid-box in the modified Smith cloud

scheme. Shaded area measures the cloud fraction as it corresponds to the integration of the cloudy part of the grid-box (i.e. qt− kqsat > 0).

Algorithm 1 Modified Smith Cloud Scheme

If αk ≤−1 then

C+ = 0 and q̄+
c = 0 (12a)

If − 1 < αk ≤ 0 then

C+ =
1

2
(1+ αk)2 and q̄+

c =
σs,1√

6
(1+ αk)3 + σs,1

√
6
(1+ αk)2

2
(α1−αk) (12b)

If 0 < αk ≤ 1 then

C+ = 1− 1

2
(1−αk)2 and q̄+

c = σs,1α1

√
6+

σs,1√
6

(1−αk)3−σs,1

√
6
(1−αk)2

2
(α1−αk) (12c)

If αk > 1 then

C+ = 1 and q̄+
c = σs,1α1

√
6 (12d)

The final closure of the system of equations can be given by an arbitrary definition of Uc,k for all values of k. However, some170

simple limiting cases in the s formulation given in Eq. (5) can be exhibited and allows to restrict the closure to the choice of

Uc,1:

Closure 1 - If predominance of humidity variability term over temperature variability term is assumed in the s formula i.e.

q′t >> kbLT ′L, then σs,k/σs,1 is equal to aL,k/aL,1 and closure is given by:

Ūc,k = Ūc,1 + k− 1 (13)175
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.

Closure 2 - If temperature variability term is assumed to be predominant in the s formula i.e. kbLT ′L >> T ′L, then σs,k/σs,1

equals kaL,k/aL,1 and closure is given by:

Ūc,k = k Ūc,1. (14)

3 Historical dataset180

This study aims to compare forecasts issued from several NWP models: ARPEGE with the modified cloud scheme, non-

modified ARPEGE, and IFS model from ECMWF, to in situ measurements of UTLS humidity. The observational dataset is

issued from instrumental data from the In-service Aircraft for a Global Observing System (IAGOS; https://www.iagos.org).

The study period extends from the 1st July 2022 to the 30th June 2023 within the aerial boundary of 80° W–40° E and

30°–75° N, covering the space of North Atlantic and Europe that is one of the world’s densest air traffic regions. The vertical185

domain extends from FL250 to FL450, encompassing regions favorable to the triggering of persistent contrails. The datasets

are randomly split into two parts, such that half of the flights are used to calibrate the modified ARPEGE cloud scheme, while

the other half is used for the verification of NWP model forecasts (see Fig. 3).
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Figure 3. IAGOS equipped flights and measurements from July 2022 to June 2023. The dataset is divided in two subsets: flights dedicated

to the calibration of the new cloud scheme (blue) and flights dedicated to the verification (orange).

3.1 NWP data

The operational version of the ARPEGE model runs 4 times a day with a stretched native grid of 5 km above Europe and 25190

km over Oceania and with a 105 level vertical grid. In the following we will denote "ARP-new" the ARPEGE model with the

modified cloud scheme, and "ARP-op" the version of the model with the operational (non-modified) cloud scheme. We also
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perform the verification of RHice provided by the high resolution (HRES) configuration of the IFS model operated by ECMWF

(ECMWF-documentation, 2025, cy48r1). It has a mean native resolution of approximately 9 km worldwide and 137 vertical

levels. ARP-op and IFS forecasts start from their own respective operational analysis. The ARP-new forecast starts from the195

analysis of ARP-op.

For all NWP models, runs of 00Z and 12Z are used, and hourly time steps from T+6 to T+17 are considered for output lead

terms. Each output is interpolated on a regular 0.25° lat/lon horizontal grid. The vertical output grid is composed of 21 vertical

pressure levels corresponding to flight levels ranging from FL250 to FL450 with intervals of 1000 ft according to the ICAO

Standard Atmosphere (ICAO, 1993).200

3.2 IAGOS

IAGOS is a European non-profit association involving research organizations, universities and weather services from Germany,

France and the U.K, which provides in situ commercial aircraft observations in relation with air quality and climate change

(e.g. Bundke et al., 2015; Filges et al., 2015; Nédélec et al., 2015; Petzold et al., 2015). Ambient air temperature and relative

humidity measurements are one of the main IAGOS-core data products. They are measured by a platinum resistance sensor205

(Pt100) and a capacitive sensor (Humicap-H, Vaisala, Finland), respectively, which are combined into the so-called ICH sensor

(IAGOS Capacitive Hygrometer (Neis et al., 2015)). The accuracy of the instruments used for RH measurements is considered

approximately 5 % with typical 1-3 min instrument response time (≃ 15− 50 km of flight if a cruising speed of 250 m/s is

considered) (e.g. Petzold et al., 2020). Aircrafts equipped with IAGOS sensors operate at a cruising altitude between 9 and 13

km, providing a comprehensive in situ dataset of UTLS humidity on a global scale, although northern extra-tropical and, in210

particular, Europe and Northern Atlantic flight paths are more frequently sampled.

The IAGOS observational dataset and NWP models have very different resolutions. Indeed, the horizontal outputs of the

model data is 0.25° (20–25 km at mid-latitudes), while the output frequency of the observations is 4 s along the flight track,

resulting in a spatial resolution of approximately 1 km between adjacent observed points, considering regular cruise speeds. In

order to have comparable resolutions for the needs of calibration and verification, the IAGOS dataset is smoothed and under-215

sampled. A temporal interval of 100 s with a centered mean-filter window is applied to obtain an under-sampled resolution of

∼25 km. Nearest point interpolation in time and space dimensions is then used to assign each observation to the NWP outputs

in closest proximity.

4 Calibration of the modified cloud scheme

In this section, we present the calibration process for the modified cloud scheme. The calibration is based on adjusting the220

saturation ratio coefficient k through the calibration coefficient Ccalib (see Fig. 4). It is also necessary to define a critical

humidity threshold for any value of k in order to obtain a closed system of equations. Two formulations given by closure 1 and

2 in equations (13) and (14) are tested (see Sect. 2.3). Both options are set in the basis of the critical humidity threshold Uc,1

that is used in ARP-op (Uc,1 ≃ 50% in the study domain).
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Figure 4. Saturation ratio coefficient k as a function of temperature for different values of Ccalib.

The RHice results given by ARP-new forecasts are compared to IAGOS in situ measurements in the UTLS, for closure 1225

(Fig. 5a) and 2 (Fig. 5b). For both closures, the frequency histogram plot with the associated frequency bias on RHice > 100 %

events is analyzed as a function of different Ccalib values: 1.0, 0.9 and 0.8.

The results in Fig. 5 show that supersaturation with respect to ice is achieved with both closures. With closure 1, slightly

higher supersaturation values are reached, however, histogram curves show a more pronounced divergence from IAGOS for

the different values of Ccalib. In contrast, closure 2 approaches the observations more closely for all RHice values. We conclude230

that in our study the closure 2 is better suited to the IAGOS observations and will therefore analyze its results in greater detail.
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Figure 5. Frequency histograms of RHice (1 % bins) with the associated frequency bias on RHice > 100 %. Results are shown for under-

sampled IAGOS observational dataset and ARP-new for different Ccalib values ranging from 0.8 to 1.0. In panel (a), ARP-new is defined

with closure 1 and in panel (b), with closure 2. Calibration dataset from the 1st July 2022 to the 30th June 2023 within the aerial boundary of

80° W–40° E and 30–75° N, covering North Atlantic and Europe.

In the RHice histogram shown in Fig. 5b, the ARP-new results demonstrate a high degree of alignment with observations for

RHice values between 80 % to 100 %, especially for Ccalib = 0.90. For supersaturated values ranging from 100 % to 110 %,

RHice values are slightly over-forecast. At a certain point, ARP-new is unable to predict higher supersaturation values. When
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Ccalib = 0.90 is set, there is a sudden halt around 115 %, meaning that RHice values above 115 % are not forecast. This limit235

can be extended to higher values as Ccalib increases but leads to an over-forecast of ISSR events as shown by the frequency

bias results.

The evaluation of the results leads us to select the following calibration set for ARP-new: Ccalib = 0.90 with closure 2. In

addition to demonstrating a relative humidity frequency distribution that closely aligns with the observations, this combination

has the best bias on RHice events > 100 % and manages to predict higher supersaturated values than Ccalib = 0.80, without240

under-predicting, unlike Ccalib = 1.00, the sub-saturated values.

5 Verification

This section is dedicated to the verification of RHice forecast and, more particularly, ISSR events by the calibrated ARP-new

model (closure 2 and Ccalib = 0.90). The results are compared to the ARP-op model and the IFS model. We pay particular

attention to the use of appropriate and easy-to-interpret metrics in the context of persistent contrail avoidance. Indeed, ISSR245

occurrences are known to be a rather rare phenomenon in the atmosphere (~10 % of the IAGOS dataset in this study) requiring

metrics adapted to such imbalanced datasets. Moreover, ISSRs can often have small dimensions compared to the synoptic scale

or be organized in heterogeneous patterns (Spichtinger and Leschner, 2016; Gierens and Vázquez-Navarro, 2018), requiring

metrics involving a neighborhood approach also referred as "spatial metrics". In addition, the choice of appropriate RHice

decision thresholds for contrail avoidance application is an on-going question (e.g. Dietmüller et al., 2023), demonstrating the250

need for sensitivity analysis. Then, after a first general analysis of the results on the continuous RHice variable in Sect. 5.1,

we propose the introduction of spatial verification metrics using the available trajectory information in Sect. 5.2, thus allowing

a better assessment of ISSR forecast quality in terms of spatial scale. A methodology for a comprehensive evaluation of the

discrimination capabilities of ISSR events with different degrees of intensity is also introduced by performing a sensitivity

analysis on RHice thresholds in Sect. 5.3.255

5.1 Verification of RHice continuous variable

The RHice histogram with the associated frequency bias for RHice > 100 % and the Mean Absolute Error (MAE) for different

observed humidity categories are calculated for the verification dataset and for three models: ARP-new, ARP-op and IFS.

Figure 6 (top) shows that ARP-new permits supersaturation, exhibiting a close alignment with the observed RHice histogram,

although it does not allow supersaturation exceeding 115 %, as underlined in the calibration study (Sect. 4). The frequency260

bias of ARP-new for RHice events greater than 100 % is neutral. ARP-new offers enhanced reliability in comparison to ARP-

op, which shows a peak at 100 %, standing out from the rest of the curve and followed by a precipitous drop beyond 100

%, indicating that supersaturation is not forecast. Moreover, ARP-new gets to remove the over-representation of the 70–100

% RHice categories of ARP-op. Concerning IFS, as shown in previous studies (e.g. Gierens et al., 2020; Sperber and Gierens,

2023), the results show a pronounced peak at 100 % and an under-estimation for higher RHice values evidenced by the frequency265
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bias (0.81) on RHice events greater than 100 %. IFS has a significant shortcoming when confronted with values exceeding 110

%.
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Figure 6. Frequency histogram of RHice (1 % bins) with the associated frequency bias on RHice > 100 % [top] and Mean Absolute Error

(MAE) computed for different categories of observed humidity (5 % bins) [bottom]. Results are shown for IAGOS observational dataset

(blue), ARP-new (purple), ARP-op (green) and IFS (orange). Verification dataset from the 1st July 2022 to the 30th June 2023 within the

aerial boundary of 80° W–40° E and 30–75° N, covering North Atlantic and Europe.

While the histogram gives a general idea of the distribution of the data, the MAE analyzes each observed RHice point

and its corresponding forecast as to how close they are in value and provides an average of the pointwise model’s accuracy.

Therefore, the conclusions of both are complementary. In Fig. 6 (bottom), ARP-new shows lower MAE values than ARP-op270

for RHice categories above 95 %, while in lower categories the MAE is just slightly higher. This suggests that most of the

values removed from the over-representation of the 70-100 % categories in ARP-op, have been correctly adjusted to represent

supersaturated values in ARP-new. For categories ranging from 95 to 105 %, the IFS model shows the lowest MAE values

across all models, however, exhibiting a steady increase for categories above 105 %. In fact, categories around 100 % are

significantly over-forecast by IFS, ensuring a lower amount of error for this specific categories of observations. In return, there275

is a strong MAE increase for under-predicted categories over 105 %. A similar trend is observed in ARP-new, however, for

higher RHice, around 115 %, i.e. precisely when the histogram reveals a shortcoming. As a result, ARP-new exhibits the lowest

MAE for higher supersaturated values.
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5.2 ISSR verification with a trajectory-neighborhood approach

5.2.1 Methodology280

This section introduces a trajectory-neighborhood verification approach for the evaluation of ISSR and presents resulting

scores. In traditional verification methods or point-by-point metrics, perfect scores require near-perfect spatial and temporal

matching with observations. However, it is not realistic to expect grid-scale accuracy in well-resolved NWP models due to

the presence of small-scale variability (Schwartz, 2017). In fact, even if the model accurately forecasts the size and structure

of an existing ISSR, it may be penalized if the predicted ISSR is slightly displaced in space and/or time. This is known as a285

"double penalty" (Gilleland et al., 2009; Bouttier and Marchal, 2024), as it would be regarded as both a miss and a false alarm,

resulting in a less favorable score than if the model had not even predicted the existence of the ISSR. It is therefore useful to

implement an effective neighborhood tolerance approach in order to deal with double penalty and capture relevant estimations

of the quality of the forecast. From another perspective, neighborhood methods can also be used to identify the spatial scale at

which a forecast becomes skillful or to determine the scale at which a desired model skill is achieved.290

In this paper, we propose a trajectory-based neighborhood approach that compares predicted values and observations with a

neighborhood tolerance oriented upstream and downstream of the flight trajectory. A symmetric approach, illustrated in Fig. 7,

is taken to redefine traditional pointwise metrics used for binary event verification such as the hit rate (HR) and the false alarm

ratio (FAR) scores (JWGFGR, 2017).

– Hit rate (HR) with neighborhood tolerance: if an ISSR is observed in the flight trajectory, the associated forecast is295

classified as a true positive if the ISSR is forecast at any point within a distance ’d’ upstream or downstream in the flight

trajectory. The hit rate in a ’d’ neighborhood can then be calculated as the ratio between the number of hits and the total

number of ISSR observations. The hit rate is also called Probability Of Detection (POD) or Recall in literature.

– False alarm ratio (FAR) with neighborhood tolerance: symmetrically, if an ISSR is forecast in the flight trajectory but

not observed within a distance ’d’ upstream or downstream from the forecast, then it is scored as a false alarm. The FAR300

is defined as the ratio between the number of false alarms and the total number of ISSR forecasts, and is related to the

precision score by Precision = 1−FAR.

The mathematical expression of HR and FAR with neighborhood tolerance is given by

HR =

∑
i

max
k∈Nd,i

Fk .Oi

∑
i

Oi
, FAR =

∑
i

max
k∈Nd,i

Ok .Fi

∑
i

Fi
, (15)

where Fi and Oi are equal to 1 when an ISSR forecast (resp. observation) occurs at ith record of the trajectory, and where Nd,i305

represents trajectory-neighborhood records downstream and upstream of the ith record within a distance d and at constant flight

level (i.e. tolerance of ±1000ft).

Hit rate and FAR are two metrics which characterize the discrimination skills of the forecast system on the positive event in

a very intuitive way: the hit rate measures the capability of the forecast system to detect observed ISSRs while FAR represents
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the predicted ISSR events which actually did not occur. These two complementary metrics often show an inverse relationship,310

where improving one of them worsens the other and can be combined in a single metric which is commonly used for imbalanced

datasets where the emphasis is on the positive event: the Fβ-score (e.g. Christen et al., 2023; Bouttier and Marchal, 2024). This

score is given by the weighted harmonic mean of hit rate and precision score, such that

Fβ-score =
1 +β2

β2 HR−1 + (1−FAR)−1
,

(
F1-score =

2
HR−1 + (1−FAR)−1

)
, (16)

where β > 1 gives more weight to detection compared to precision and inversely if β < 1. In the case of rare events with315

high impact, the emphasis is often on the hit rate. However, in the case of ISSRs, it is important to ensure precision. By

avoiding areas that are not actually supersaturated, aviation contribution to global warming could increase with respect to the

baseline trajectory by supplementary CO2 emissions, thus achieving the opposite effect to what was intended. In this paper, a

neutral value of β = 1 is chosen and we leave to future studies the possibility of considering other values of this parameter in

conjunction with optimization work involving climate metrics.320

Aircraft trajectory
(constant flight level)

ISSR is forecast in the 
trajectory neighbourhood
of an ISSR observation

Hits 

No ISSR is observed in the 
trajectory neighbourhood
of an ISSR forecast

False alarms

Fraction coverage

ISSR is observed

 - Fraction of observed ISSR within a segment of trajectory

 - Fraction of forecast ISSR within a segment of trajectory

Trajectory-neighborhood metrics

ISSR is forecast

Figure 7. Definition of hits, false alarms and fraction coverage methodology on ISSR events with a trajectory-neighborhood approach.

In addition to the Fβ score, a trajectory-neighborhood Fraction Skill Score (FSS) is implemented. This widely used method

compares the forecast and observed ISSR fractional coverage within a defined spatial neighborhood (Ebert, 2009; JWGFGR,

2017). It is defined in our context by

FSS = 1−

∑
i

(
⟨Pf ⟩Nd,i

−⟨Po⟩Nd,i

)2

∑
i

⟨Pf ⟩2Nd,i
+

∑
i

⟨Po⟩2Nd,i

, (17)
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where ⟨Pf ⟩Nd,i
and ⟨Po⟩Nd,i

are the fraction of ISSR forecasts (resp. observations) in the neighborhood Nd,i (see illustration325

in Fig. 7). The score is a skill metric inspired by the Brier score, which evaluates the difference between observed and predicted

ISSR event fractions, considered as probabilities.

5.2.2 Results

The results of ISSR verification with trajectory-based approach are given in Fig. 8, where the outcomes of HR, FAR, F1-score

and FSS are shown for varying neighborhood values ranging from the nearest to 240 km, with 30 km increments. The 95 %330

confidence intervals are calculated by using the bootstrap technique to account for sampling uncertainty (e.g. Bradley et al.,

2008).

Figure 8. HR, FAR, F1-score and FSS score on ISSR events (RHice > 100 %) forecasts depending on increasing neighborhood spatial

tolerance, for ARP-new (purple) and for IFS (orange) with 95 % confidence intervals. Neighborhood distances range from the nearest to 270

km, with 30 km increments. Verification dataset from the 1st July 2022 to the 30th June 2023 within the aerial boundary of 80° W–40° E and

30–75° N, covering North Atlantic and Europe.

The results show that the scores have a high sensitivity to the neighborhood tolerance. With a neighborhood tolerance of 150

km which represents approximately 10 minutes of flight, ARP-new has a HR of around 77 % and a FAR of 31 %, compared

with 53 % and 49 % respectively for the nearest grid-point. These values indicate that when an ISSR was observed, an ISSR335
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was forecast in a 150 km neighborhood in 77 % of the cases, and symmetrically that when an ISSR was forecast, an event

could be observed in 69 % of the cases. If higher neighborhood tolerances are applied, the HR can reach values higher than 80

% with a FAR lower than 30 %, showing a rather good spatial agreement between observations and forecasts of ISSRs events.

A comparison of the discrimination capabilities of ARP-new and IFS shows that both NWP models have close skills. When

no neighborhood tolerance is taken into account, ARP-new has a higher HR but also a higher FAR than IFS. This translates340

into close F1 and FSS scores for both models, with a slight advantage for ARP-new. Increasing the neighborhood tolerance

improves all scores for both models, but IFS shows a better HR, FAR and F1-score than ARP-new, while the FSS scores still

overlap. Some care has to be taken when comparing HR, FAR and F1-score with neighborhoods. Indeed, because of its general

underestimation of ISSR (frequency bias ∼ 0.8), IFS will have a tendency to have low FARs and low HRs when the nearest

point is considered. When the neighborhood tolerance is increased, the HR becomes less sensitive to this dry bias, since a345

single positive forecast in the neighborhood is enough to obtain a hit. This explains why, when the neighborhood tolerance is

increased, IFS shows a greater increase in the HR, and consequently, in the F1-score compared to ARP-new which has a neutral

bias. Although the FSS score is less easy to interpret, it appears to be more robust for global performance comparison purposes

as it does not artificially offset biases.

5.3 Sensitivity analysis on RHice decision threshold350

In Sect. 5.2, the RHice threshold has been set at 100 % in order to identify ISSRs in both forecasts and observations. However,

there is a high interest in studying the sensitivity of scores on ISSR threshold definition for both forecast and observations:

– Regarding forecasts, varying the RHice threshold provides an overview of the NWP model performance range and should

be considered for a complete evaluation of NWP model discriminatory skills. Since models are not perfectly calibrated

to observations, there may be forecast threshold values that offer better scores than the 100 % threshold regarding the355

end-user needs (see e.g. Dietmüller et al. (2023) who used a threshold lower than 100 % for ISSR detection in ERA5

models, and Teoh et al. (2022) and Wolf et al. (2025) who used post-processing recalibration of the RHice parameter).

– Regarding observations, evaluating the forecast of highly ice supersaturated regions (i.e. RHice ≃ 110 %, 120 %, ...) is

also needed, as literature has shown that the lifetime persistence of contrails is influenced by the level of the supersatu-

ration in the ISSR (Schumann et al., 2012). For slightly subsaturated regions (i.e. RHice ≃ 90 %, 95 %), there is also an360

interest as it has been shown that saturation rates just below ice saturation could be sufficient to allow the existence of

persistent contrails (Li et al., 2023).

In order to perform this sensitivity study, a robust approach in the context of imbalanced datasets is to use a graphical tool

called the Precision-Recall curve (Saito and Rehmsmeier, 2015). The Precision-Recall curve is drawn by calculating the recall

(i.e. hit rate) and precision (i.e. 1-FAR) scores at several RHice thresholds for the forecast. In general terms, the curve closest365

to the top/right corner corresponds to the best discrimination capabilities, where precision and hit rate (recall) are optimal, i.e.,

equal to 1. This graphical tool is roughly equivalent to the widely used Receive Operation Characteristic (ROC) curve, but the

Precision-Recall curve is better used in the context of rare events (Saito and Rehmsmeier, 2015; Bouttier and Marchal, 2024).
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In Fig. 9, we show the Precision-Recall curves computed with no neighborhood tolerance. We represent four distinct plots,

each corresponding to a different RHice threshold for the observations: 95 %, 100 %, 105 % and 115 %. We include ARP-op370

in this plot because, although it does not permit supersaturation, it may be capable of detecting ISSRs with a threshold of less

than 100 %. For each curve, we calculate the Average Precision (AP), which is defined as the area under the Precision-Recall

curve. The AP offers a concise overview of the Precision-Recall curve, facilitating direct comparisons between models and

their scores across varying RHice ranges. Moreover, we represent the diagonal line where neutral frequency bias is obtained.

The results obtained with the observation threshold of 100 % (Fig. 9b) indicate that all three models have close APs, with375

an advantage for IFS. In addition, IFS exhibits the highest precision and recall scores close to the diagonal where neutral

frequency bias is obtained. A comparison of the APs obtained with the 95 % threshold (Fig. 9a) reveals an improvement for all

models with IFS being significantly better in the diagonal region. At higher humidity ranges, with the threshold of 105 % and

115 % (Fig. 9c and d), the APs are significantly lower for all the models, with ARP-new and ARP-op now performing the best.

When comparing APs obtained for relative humidity above 100 % versus 115 %, a decrease of approximately 60 % in scores380

is revealed for all models.

The comparison of ARP-new model with ARP-op model shows that both models have a similar ability to discriminate ISSRs.

For example, forecast threshold of 90 % in the non-modified ARPEGE corresponds to broadly the same HR and precision

values as a threshold of 100 % with the modified cloud scheme. We conclude that the modified scheme strongly enhanced the

reliability of the ARPEGE forecast of ISSR (as shown by Fig. 6), while being neutral on its inherent discrimination skills.385

A comparison of the monotony of the Precision-Recall curves reveals that ARP-new and ARP-op exhibit divergent behavior

compared to IFS. The ARPEGE curves are quasi monotonic, indicating that an increase in the decision threshold of the forecast

is accompanied by an increase in precision. In contrast, IFS does not follow the same behavior. From a certain threshold close

to 98 %, an increase in the decision threshold results in a decline in both precision and recall. This penalizes the global AP

score for IFS, while it exhibits its maximum potential of ISSR discrimination for thresholds close to 98 %.390

In addition to providing an overview of the performance of each model, the Precision-Recall curves can also be used to

adjust the decision threshold in line with specific preferences regarding non-detections and false alarms. For example, should

a pointwise HR of 0.6 be requested, we can ascertain the RHice threshold that should be selected in each model to discriminate

ISSRs and the pointwise precision that will be achieved. If we fix the observation threshold at 100 % and aim for a HR of 0.6,

we will have to choose RHice = 97 % as the threshold for the ARP-new forecast, giving a precision of 0.49. Similarly, we would395

have to choose a threshold of 87 % for ARP-op, with a precision of 0.47, and 97 % for IFS, with 0.55 precision.

Finally, it should be noted that the Precision-Recall curve can also be calculated with a neighborhood tolerance, following

the methodology presented in Sect. 5.2.1 to calculate the HR and FAR.

5.4 Case study

In this section, we investigate a transatlantic IAGOS flight from 23 September 2022 between Frankfurt (Germany) and Wash-400

ington D.C. (USA). A comparison is made between the observed and forecast ISSRs using IAGOS measurements and NWP
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(a) (b)

(c) (d)

Figure 9. Precision-Recall curves representing discrimination skills of ARP-new (purple), ARP-op (green) and IFS (orange) for different

RHice thresholds for observations: (a) 95 %, (b) 100 %, (c) 105 % and (d) 115 %. All the curves have been calculated without neighborhood

tolerance. Intervals of 95 % confidence are shown with shaded areas. The points on the curves corresponding to the forecast thresholds are

indicated accordingly: 95 %, 100 %, 105 % and 115 %. The legend includes the Average Precision score (AP) for each curve. The diagonal

represents the neutral bias line. Verification dataset from the 1st July 2022 to the 30th June 2023 within the aerial boundary of 80° W–40° E

and 30–75° N, covering North Atlantic and Europe.
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data from both ARP-new, ARP-op and IFS. Figure 10 shows RHice along the IAGOS flight path. Take-off and landing are not

included in this graph, as flight levels below FL250 are not of interest for this study.

(a)

(b)

Figure 10. Case study of a transatlantic IAGOS flight, departing Frankfurt (FRA), Germany, on 23 September 2022 at 09:07 UTC and

landing in Washington (IAD), USA, at 18:03 UTC. Panel (a) presents the flight trajectory with the observed RHice values. Two main ISSR

events are identified denoted A and B. In panel (b), the times series shows the temporal evolution of RHice during the flight trajectory as

measured by the IAGOS sensor (blue) and as forecast by NWP models - run 00Z. We represent ARP-new (purple), ARP-op (green) and IFS

(orange). The three bottom series highlight observed ISSR occurrences (blue shading) with predicted ones for ARP-new (purple shading)

and IFS (orange shading).
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There are two distinct areas where the values are greater than 100 %, shown in orange and red (Fig. 10a). The first is over

the Atlantic Ocean (region A), and the second is the vicinity of Newfoundland, Canada (region B). In Fig. 10b, the time405

series show the temporal evolution of RHice, with ISSR events highlighted in bottom plots to facilitate comparison between

observations and forecasts. In this case, the ARP-new model has a very good agreement with the occurrence of ISSR events

in regions A and B, particularly in region B. In the region A, RHice reveals that the ARP-new curve is slightly below the

ISSR threshold while the observations start being supersaturated, yet leading to ’miss’ events when, in fact, the global view of

the episode is well predicted. This demonstrates the value of the neighborhood approach as a means of correctly interpreting410

scores. ARP-op, as it does not predict RHice values higher than 100 %, does not detect the ISSRs. However, it follows closely

the time evolution of observations, even though it remains below the observations for RHice > 100 %. With regard to IFS,

while the plot comparing the ISSRs indicates that it did not fully predict the episode, the relative humidity evolution reveals a

pattern very closely aligned with the observations, but with a deficiency in reaching higher supersaturated values, confirming

the IFS under-prediction of high values of RHice, as shown in Fig. 6. In the case of IFS, introducing a neighborhood tolerance415

in the verification process allows to counterbalance this under-representation of ISSR and exhibit the potential of detection

capabilities of this model.

Figure 11 provides a zoomed spatial view of regions A and B. ISSR observed events in the flight trajectory are compared

to ARP-new forecast at corresponding flight levels, and the presence of multiple persistent contrails is shown on the Cirrus

Reflectance Product from Suomi NPP/VIIRS at times close to the flight path. This example highlights the good agreement420

between observations and forecast and confirms the potential of what could be made using NWP model forecasts to predict

environments favorable to persistent contrail triggering.

Figure 11. Cirrus Reflectance satellite imagery provided by NASA Worldview (https://worldview.earthdata.nasa.gov) from Suomi NPP/VI-

IRS identifying persistent contrails regions A (left) and B (right) on 23 September 2022 from the case study shown in Fig.10. IAGOS flight

path is shown (cyan dots) exhibiting observed ISSR events (red dots). Forecast of ISSR by ARP-new model run-00Z at lead terms T+13 (left)

T+16 (right) is given in spatio-temporal vicinity of the flight trajectory.
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6 Discussion

Discussion on three key areas is proposed in the following. First, we analyze the modifications and assumptions we have made

on the cloud scheme and microphysics of the ARPEGE model. Second, we explore the definition of appropriate verification425

methodologies to provide a comprehensive picture of a model’s skill in the context of ISSR avoidance. Finally, we discuss

the results obtained on the performance of NWP models for ISSR discrimination and the implications for contrail avoidance

applications.

6.1 Cloud scheme and microphysics

A modified ARPEGE cloud scheme which allows supersaturation w.r.t ice is presented in this work. Some of the concepts430

developed by Tompkins et al. (2007) in the framework of the IFS cloud scheme are used and adapted to be applied in the

original Smith cloud scheme implemented in ARPEGE. This allows to obtain local supersaturation w.r.t ice in the clear-sky

part of the grid-box, instead of assuming local ice saturation adjustment at any point. An important point is that much of the

methodology leading to the new parametrization is independent of the choice of the statistical distribution for the description

of local humidity and temperature variations inside the grid-box. This allows similar developments for NWP models using the435

same type of statistical concepts for cloud representation. This is the case, for example, of the ICE3 micro-physical scheme

implemented in the French regional NWP model AROME (Seity et al., 2011, 2012), which uses a Gaussian distribution for the

representation of clouds and could benefit from these developments. Another important point is that this modification can be

implemented without any major modification to the operational ARPEGE cloud scheme, and does not imply supplementary

computational effort.440

In the new scheme, some assumptions are made regarding the introduction of supersaturation in ARPEGE cloud scheme,

most of them having already been discussed in Tompkins et al. (2007); Sperber and Gierens (2023). For example, in the modi-

fied scheme, in-cloud adjustment to ice saturation is assumed instantaneous. However, it has been shown that RHice decreases

with a relaxation time that can exceed several time steps, to finally reach few percent above saturation, thus allowing local in-

cloud supersaturation w.r.t ice. Sperber and Gierens (2023) proposed a cooling-cloud formation-phase relaxation process as an445

alternative to instantly adjusting to the equilibrium value. This modification requires the addition of new prognostic variables

describing the history of in-cloud supersaturation, which adds further complexity, but could result in a better description of

RHice distribution for the highest values. Regarding cirrus cloud formation, homogeneous nucleation is considered dominant

compared to heterogeneous nucleation at the altitudes and temperatures of interest for the contrail application. It can be jus-

tified by the presence of relatively pristine environments with few ice nucleating particles (see e.g. Gierens, 2003; Tompkins450

et al., 2007; Sperber and Gierens, 2023). Thus, a threshold with temperature dependence issued from Koop et al. (2000) is used

to represent the maximum local value of supersaturation which can be obtained before homogeneous nucleation processes

are activated. Sperber and Gierens (2023) highlight that for slow updrafts the amount of generated ice crystals could however

become large enough to reduce the supersaturation limit. This could lead to incorporate the vertical velocity in the expression

of this coefficient. In a general way we acknowledge that cloud formation processes, and then supersaturation w.r.t ice will455
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be better represented in NWP models involving more detailed physical processes, including aerosols, with 2-moment schemes

that better represent the physics of nucleation and crystal growth in a complex background (Vié et al., 2016; Thompson et al.,

2024; Seifert, 2024). However, the balance of computational costs and improved forecast benefits needs to be carefully assessed

before implementing such a complex scheme into an operational system.

Finally, we decided to focus this study on the Europe and North Atlantic domain due to the high density of aircraft in this460

area, which provides a large number of available observations (Teoh et al., 2024). However, we believe that this work could be

extended to tropical regions. In this case, it might be calibrated accordingly, given that tropical climates differ from mid-latitude

regions and the occurrence of ISSRs depends on factors such as dominant deep convection (Spichtinger and Leschner, 2016).

The final steps towards operationalizing the modified scheme are to verify the impact on the general parameters of the global

NWP model (temperature, wind, etc.) and to adjust all the parameterizations accordingly. Indeed, modifying the cloud scheme,465

and in particular the representation of cirrus clouds, has a feedback effect on the radiation balance, which plays a decisive role

in the model’s outcomes.

6.2 Verification methodology

In this work, particular attention has been paid to the definition of appropriate verification metrics. In addition to traditional

verification methods on humidity variable (e.g. Frequency histograms, Mean Absolute Error), the statistical results emphasize470

the importance of adopting a neighborhood approach when evaluating the capacity of a model to discriminate ISSRs. Introduc-

ing a neighborhood tolerance allows to link the quality of the forecast to a spatial scale, as well as addressing several scoring

issues (e.g. double penalty, observation uncertainty, interpolation on gridded data). The trajectory-neighborhood method is

intuitive, simple to implement and results can be interpreted in the frame of a flight trajectory. However, it does not include

forecast information on the adjacent vertical levels, nor of points to the right or left of the flight trajectory. Consequently, the475

method compromises between maintaining symmetry in dealing with forecasts and observations and ensuring straightforward

interpretation with the flight trajectory, while disregarding the potential to consider forecasts of ISSRs that may be offset to

one side of the flight trajectory.

The verification metrics HR, FAR and Fβ-score with the use of a neighborhood tolerance, give easily interpretable informa-

tion on spatial scales at which a certain degree of correspondence between observed and forecast events is achieved, but this480

methodology can hide biases and should be completed by its estimation to have a complete overview of the performances of

the forecasts. The FSS score is less directly interpretable, but provides a summary of all the factors that can assess NWP model

quality (including true negatives in the verification). The Recall-Precision plot has shown to be a valuable tool to measure the

sensitivity of different NWP models to RHice decision threshold, and provide a full NWP model inter-comparison outcome.

Further verification metrics could also be explored by methods based on neighborhood-populating contingency tables (e.g.485

Gilleland et al., 2009; Schwartz, 2017; Stein and Stoop, 2019), each method having their qualities and drawbacks regarding for

example inconsistent event definitions or keeping symmetry between hit and false alarm calculations. Other advanced spatial

verification techniques, such as object-based methods (Wolff et al., 2014) could provide further information on NWP model
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quality, for example by targeting most significant ISSR features. However, implementing this kind of methodology can present

some challenges regarding mathematical data processing to obtain geometrically coherent ISSR features.490

In future works, complementary observational dataset could be useful for further verification of the NWP models. For

instance, radiosonde observations could provide information on the vertical profile of humidity and temperature (e.g. Bland

et al., 2021; Thompson et al., 2024). Also, contrails tracked using satellite imagery, ground-based cameras and lidars (Vazquez-

Navarro et al., 2010; Kulik, 2019; Chevallier et al., 2023), along with flight and ground-based contrail observations (Curat and

Péchaud, 2023, COOP Program) represent an additional data source. However, verification is less direct, as both contrail495

formation (Schmidt-Appleman) and its persistence (ISSR) must be considered together.

6.3 Performances of NWP models for ISSR discrimination and potential use for contrail avoidance application

This study shows that ARP-new has an enhanced agreement with RHice observations from IAGOS measurements in the UTLS

when compared to ARP-op. Results of Sect. 5.1 show that it corrects the dry bias of RHice above 70 % and overcomes the limit

at 100 % that the operational model exhibits. However, it over-predicts slightly occurrences of RHice in the range of 105 % to500

115 % and under-predicts values above 115 %. As a confirmation of previous studies, IFS exhibits also a capability to produce

supersaturation w.r.t ice, but with an overestimation of values very close to 100 %, a general underestimation of ISSRs, and a

shortcoming in representing values above 105 %.

In terms of model performance to detect ISSR events, ARP-new and IFS models show close skills as shown by the FSS score

verification in Sect. 5.2.2. For ARP-new, HR and FAR results indicate that when ISSR was observed in IAGOS, an ISSR was505

forecast in a 150 km upstream or downstream the trajectory (i.e. 10 min of flight) in∼80 % of the cases. Symmetrically when an

ISSR was forecast, ISSR event could be observed in ∼70 % of the cases. This indicates a rather good spatial correspondence

between forecasts and observations. For IFS, the scores are even better but must be tempered because of the IFS dry bias

which is artificially corrected when neighborhood tolerance is applied. These statistical results are well illustrated by the case

study presented in Sect. 5.4. On this case, the correspondence between forecast and observation patterns is exhibited for both510

ARPEGE and IFS models on RHice spatio-temporal evolution. On the one hand, ARP-new corresponds closely to observations

in the ISSR zones. On the other hand, ARP-op and, to a lesser extent, IFS show underestimation of the highest RHice values in

accordance with their statistical dry bias on ISSR.

The sensitivity study driven on the RHice threshold provides additional information. In particular, it allows a comparison on

NWP model skills for detecting ISSR events, relaxing the constraint on the choice of RHice decision thresholds in the forecast.515

This comparison shows that ARP-new outperforms IFS in predicting the highest supersaturated events and that, conversely,

IFS outperforms ARP-new when slight undersaturation thresholds are considered. In addition, the range of HR and FAR pairs

that can be obtained by each model with adjusted thresholds is measured. It shows that even without allowing supersaturation,

the ARP-op has also skill for discriminating ISSRs, similar to ARP-new if decision thresholds lower than 100 % are applied,

which is a major conclusion of this work. This suggests that post-processing recalibration of RHice outputs can be a workable520

strategy to use non-allowing supersaturation NWP forecast such as ARP-op. Finally, the study shows that IFS and ARP-new

recall-precision curves have a shortcoming on precision when decision thresholds greater than a certain amount (98 % for IFS,
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resp. 110 % for ARP-new) are applied in the forecast. Indeed, while higher thresholds should lead to greater success ratio of

ISSR forecasts, the results show a stagnation of precision beyond these thresholds. This is particularly true for IFS leading to

the conclusion that applying thresholds greater than 98 % to detect ISSR is de facto sub-optimal. We believe that this behavior525

should be further analyzed to understand its cause, probably related to the saturation adjustment process.

It is important to note that the comparison between different NWP models which is conducted in this study is not able to

separate the specific contribution of the cloud and microphysical schemes in ARPEGE or IFS regarding ISSR forecast. In a

schematic view, the quality of a NWP model for predicting supersaturation w.r.t ice is the result of the quality in representing

several processes across various scales, among them: at the largest scales, the global circulation, which induces the positioning530

of high water content areas in the right geographical location, and at a lower scale the microphysical processes that allows

to estimate the right amount of supersaturation reached in these areas. Comparing separately cloud schemes within the same

NWP model could be done in dedicated research work but will represent a certain amount of implementation and calibration

work. A first, lighter approach, which could be used to minimize the impact of global circulation on scores, would be to base

forecasts on the same analysis at initial time.535

Moving forward to end-user verification metrics is sketched out in this work by proposing the use of spatial metrics in the

verification to take into account the spatial scales of the operational context. This may involve the inclusion of a margin of

uncertainty when planning avoidance strategies. For instance, according to Fig. 8, including a 150 km margin to avoid an

ISSR forecast helps guarantee that ∼80 % of the ISSRs that actually occurred will be avoided, and that ∼70 % of the flight

paths will be appropriately rerouted, otherwise an ISSR would have been crossed. The introduction of the Fβ-score is also a540

user-oriented approach as it allows to give differential weight in scoring to detection or precision capabilities of the forecast.

Indeed, precision has a great importance in a contrail avoidance operation where supplementary CO2 emissions are emitted.

Assessment of quality regarding contrail application requires a further step beyond this study, involving traffic and use of

climate metrics with associated CO2 and non-CO2 contributions. Some additional degrees of freedom in the use of NWP

models in the operational context can also be obtained which opens optimization possibilities. For example, the sensitivity545

study on RHice decision threshold presented in this work can be used as a base for future optimization work which would

tune this threshold according to climate impact metrics and operational constraints. In the same vein, the use of a multi-model

approach or/and ensemble forecasts could also prove very useful for this type of trade-off problem by tuning a probability

threshold on persistent contrails occurrence conditions.

7 Conclusions550

This article presents improvements in the cloud scheme of the global ARPEGE NWP model to allow the representation of

supersaturation w.r.t ice in the UTLS. This study goes hand to hand with a verification methodology that explores NWP model

skills in forecasting RHice, within the context of persistent contrail mitigation applications. Forecasts of ARPEGE with the

modified cloud scheme, are compared to the non-modified (operational) ARPEGE and the IFS model from ECMWF which
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already implements a supersaturation parametrization. The models are evaluated against aircraft in situ measurements of UTLS555

humidity from the IAGOS program. Here are the main conclusions of the study:

– The modified cloud scheme allows supersaturation and bias correction for humidity, showing close alignment with the

RHice distribution of in situ aircraft measurements. This modification does not require any major algorithmic changes or

additional computational effort. In addition, the methodology used provides a framework that can be applied to similar

statistical cloud schemes.560

– Discrimination capabilities when forecasting ISSRs with the modified ARPEGE at lead terms between 6 and 18 hours

show a hit rate of∼80 % and a false alarm ratio of∼30 % when a neighborhood tolerance of 150 km i.e. 10 min of flight

is applied. These results show a good spatial agreement between forecast and observations.

– When compared to the IFS forecast, the modified ARPEGE model exhibits a potential improvement in the representa-

tion of RHice distribution around and beyond saturation. Regarding ISSR discrimination skills, the modified ARPEGE565

exhibits broadly similar capabilities to those of IFS, better for IFS when slightly subsaturated events are considered, and

better for modified ARPEGE when high supersaturated events are considered. In both cases, the models have shortcom-

ings in representing the highest values of RHice (>105-110 % for IFS, >115 % for ARPEGE).

– Scores show that the operational ARPEGE, even without supersaturation physics, can also be used to discriminate

ISSRs provided that a RHice decision threshold lower than 100 % is applied. For IFS, using a RHice threshold of 100 %570

to detect ISSR is shown to be sub-optimal and lower thresholds ( 98 %) seem to be more appropriate. This suggests that

post-processing recalibration of RHice outputs could be a viable solution when using NWP forecasts with non-allowing

supersaturation schemes or more generally biased humidity outputs. However, it implies supplementary complexity for

end-users. A model like the modified ARPEGE could allow for direct implementation without the need for adjustments,

enabling flight trajectory optimization testing without additional effort.575

– With regard to ISSR verification methodologies, the benefits of using spatial metrics are demonstrated. Indeed, in ad-

dition to solving traditional scoring issues like double penalty, spatial metrics are useful to relate the forecast skills at

different spatial scales to the end-user application: here the avoidance margin applied to ISSR forecasts when rerout-

ing flight paths. Sensitivity study is also conducted on humidity decision thresholds in order to comprehensively assess

performance and make meaningful comparisons between discrimination skills of NWP models.580

In the short term, the main perspectives will be to make the modified scheme operational, which involves: coupling the assimi-

lation, analyzing the impact on the ARPEGE general circulation on a global scale, and readjusting the parameter set according

to the results, if necessary. Additional checks may also be carried out using complementary observations (e.g. radiosondes) to

study the performance of the models in capturing the vertical extent of ISSRs, which can be essential for avoidance strategies.

As part of CICONIA SESAR Joint Undertaking (2023), with end-user partners, work on cost/loss metrics linking NWP model585

ISSR discrimination capabilities to traffic and climate metrics with associated CO2 and non-CO2 contributions is underway to

explore the feasibility of avoidance scenarios.
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Appendix A: Modified Smith cloud scheme calculations

A1 General expressions of cloud fraction and mean water content

The mean cloud fraction is given by the integration of qt− kqsat distribution G[Qc,k,σs,k] for positive values only, which590

corresponds the cloudy part of the grid-box:

C+ =

+∞∫

0

G[Qc,k,σs,k](q)dq. (A1)

Introducing t = (q−Qc,k)/σs,k scaling gives:

C+ =

+∞∫

−Qc,k/σs,k

G[0,1](t)dt, (A2)

where G[0,1] is the centred and reduced probability distribution.595

In a similar way, the mean condensate content after adjustment q̄+
c is given by the expectation formula using the qt− qsat

distribution. The integration is proceeded on the cloudy part of the grid-box. In order to get a workable expression, it is assumed

that qt− kqsat > 0 coincides with the highest values of qt− qsat. This allows to calculate q̄+
c such that

q̄+
c =

+∞∫

q∗

G[Qc,1,σs,1](q).q dq, (A3)

where the lower bound of the interval q∗ is implicitly defined to ensure cloud fraction consistency with C+ found in (A2) as600

shown in Fig. A1. This condition gives the following equality:

+∞∫

q∗

G[Qc,1,σs,1](q)dq =

+∞∫

0

G[Qc,k,σs,k](q)dq = C+. (A4)

Re-scaling left and right members of equation (A4) by t = (q−Qc,1)/σs,1 (left) and t = (q−Qc,k)/σs,k (right) leads to:

+∞∫

(q∗−Qc,1)/σs,1

G[0,1](t)dt =

+∞∫

−Qc,k/σs,k

G[0,1](t)dt (A5)

which, by identification of lower integration bounds gives:605

q∗ = Qc,1−Qc,k
σs,1

σs,k
. (A6)

This expression leads to the following formulation for the computation of the mean condensate content:

q̄+
c =

+∞∫

Qc,1−Qc,k
σs,1
σs,k

G[Qc,1,σs,1](q).q dq. (A7)
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Then, introducing t = (q−Qc,1)/σs,1 scaling gives the following expression for the mean cloud water content after adjustment:

610

q̄+
c = σs,1

+∞∫

−Qc,k/σs,k

G[0,1](t)
(

t +
Qc,1

σs,1

)
dt. (A8)

0

0

Figure A1. Illustration of integration steps to compute the mean cloud fraction C+ and the mean condensate content q̄+
c within the grid-box

with triangular distributions. The first step is the integration of qt− kqsat distribution on its positive support in order to compute cloudiness

C+. The second step is the integration of local cloud contents defined by the qt− qsat distribution on the grid-box cloudy part, leading to

q̄+
c . In this second step, the integration domain is [q∗,+∞[ where q∗ is defined to ensure consistency on cloudiness computation.

A2 Application with a triangular distribution

Symmetric triangular probability law is given by the following set of equations:

G[0,1](t) =





0 t≤−
√

6

1
6 t + 1√

6
−
√

6 < t≤ 0

− 1
6 t + 1√

6
0 < t≤

√
6

0 t >
√

6

(A9)
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Easier calculations are obtained by introducing a re-scaled function H(T ) =
√

6G[0,1](
√

6T ):615

H(t) =





0 T ≤−1

1 +T −1 < T ≤ 0

1−T 0 < T ≤ 1

0 T > 1

(A10)

A2.1 Computation of cloud fraction C+

Integration of the cloud fraction can be expressed in the following manner:

C+ =

+∞∫

−Qc,k/σs,k

G[0,1](t)dt =

+∞∫

−αk

√
6

G[0,1](t)dt =

+∞∫

−αk

√
6G[0,1](

√
6T )dT =

+∞∫

−αk

H(T )dT. (A11)

Case 1: αk ≤−1620

If αk ≤−1, the lower bound of integration is greater than 1 then C+ = 0.

Case 2: −1 < αk ≤ 0

If −1 < αk ≤ 0, then 0 <−αk ≤ 1:

C+ =

1∫

−αk

1−T dT =
1
2

(1 +αk)2 . (A12)

Case 3: 0 < αk ≤ 1625

If 0 < αk ≤ 1, then −1 <−αk ≤ 0:

C+ =

0∫

−αk

1 +T dT +

1∫

0

1−T dT =

0∫

−αk

1 +T dT +
1
2

=
1
2
− 1

2
(1−αk)2 +

1
2

= 1− 1
2

(1−αk)2 . (A13)

Case 4: αk >−1

In this case, −αk <−1, and result can be inferred from case 3:

C+ =

0∫

−1

1 +T dT +

1∫

0

1−T dT = 1. (A14)630

A2.2 Computation of mean condensed water q̄+
c

Integration of mean water content can be expressed in the following manner:

q̄+
c = σs,1

+∞∫

−Qc,k/σs,k

G[0,1](t)
(

t +
Qc,1

σs,1

)
dt = σs,1

+∞∫

−αk

√
6

G[0,1](t)
(
t + α1

√
6
)

dt = σs,1

√
6

+∞∫

−αk

H(T )(α1 + T ) dT. (A15)
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Case 1: αk ≤−1

If αk ≤−1, the lower bound of integration is greater than 1 then q+
c = 0.635

Case 2: −1 < αk ≤ 0

If −1 < αk ≤ 0, then 0 <−αk ≤ 1:

q̄+
c = σs,1

√
6

1∫

−αk

(1−T )(α1 + T ) dT. (A16)

Using integration by parts gives:

q̄+
c =

σs,1

√
6

2

1∫

−αk

(1−T )2 dT − σs,1

√
6

2
[
(1−T )2(α1 + T )

]1
−αk

(A17)640

=
σs,1√

6
(1 +αk)3 +

σs,1

√
6

2
[
(1 +αk)2(α1−αk)

]
. (A18)

Case 3: 0 < αk ≤ 1

If 0 < αk ≤ 1, then −1 <−αk ≤ 0:

q̄+
c = σs,1

√
6

0∫

−αk

(1 +T )(α1 + T ) dT + σs,1

√
6

1∫

0

(1−T )(α1 + T ) dT. (A19)

Applying integration by parts on the first integral and using results of case 2 for the second integral gives:645

q̄+
c =

σs,1

√
6

2

0∫

−αk

(1 +T )2 dT − σs,1

√
6

2
[
(1 +T )2(α1 + T )

]0
−αk

+

[
σs,1√

6
+

σs,1α1

√
6

2

]
(A20)

=−σs,1√
6

[
(1 +T )3

]0
−αk

+
σs,1

√
6

2
[
(1 +T )2(α1 + T )

]0
−αk

+

[
σs,1√

6
+

σs,1α1

√
6

2

]
(A21)

=−σs,1√
6

+
σs,1√

6
(1−αk)3 +

σs,1α1

√
6

2
− σs,1

√
6

2
(1−αk)2(α1−αk) +

σs,1√
6

+
σs,1α1

√
6

2
(A22)

= σs,1α1

√
6 +

σs,1√
6

(1−αk)3− σs,1

√
6

2
(1−αk)2(α1−αk). (A23)

Case 4: αk > 1650

In this case, −αk <−1, then,

q̄+
c = σs,1

√
6

0∫

−1

(1 +T )(α1 + T ) dT + σs,1

√
6

1∫

0

(1−T )(α1 + T ) dT. (A24)

Expression of q+
c can be inferred from case 3 by setting αk = 1. We obtain:

q̄+
c = σs,1α1

√
6. (A25)
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