001046962 001__ 1046962
001046962 005__ 20251007202036.0
001046962 0247_ $$2arXiv$$aarXiv:2505.19772v1
001046962 037__ $$aFZJ-2025-04030
001046962 088__ $$2arXiv$$aarXiv:2505.19772v1
001046962 1001_ $$0P:(DE-HGF)0$$aPossel, Clemens$$b0$$eCorresponding author
001046962 245__ $$aTruncated Variational Hamiltonian Ansatz: efficient quantum circuit design for quantum chemistry and material science
001046962 260__ $$c2025
001046962 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1759834011_18106
001046962 3367_ $$2ORCID$$aWORKING_PAPER
001046962 3367_ $$028$$2EndNote$$aElectronic Article
001046962 3367_ $$2DRIVER$$apreprint
001046962 3367_ $$2BibTeX$$aARTICLE
001046962 3367_ $$2DataCite$$aOutput Types/Working Paper
001046962 520__ $$aQuantum computing has the potential to revolutionize quantum chemistry and material science by offering solutions to complex problems unattainable with classical computers. However, the development of efficient quantum algorithms that are efficient under noisy conditions remains a major challenge. This paper introduces the truncated Variational Hamiltonian Ansatz (tVHA), a novel circuit design for conducting quantum calculations on Noisy Intermediate-Scale Quantum (NISQ) devices. tVHA provides a promising approach for a broad range of applications by utilizing principles from the adiabatic theorem in solid state physics. Our proposed ansatz significantly reduces the parameter count and can decrease circuit size substantially, with a trade-off in accuracy. Thus, tVHA facilitates easier convergence within the variational quantum eigensolver framework compared to state-of-the-art ansätze such as Unitary Coupled Cluster (UCC) and Hardware-Efficient Ansatz (HEA). While this paper concentrates on the practical applications of tVHA in quantum chemistry, demonstrating its suitability for both weakly and strongly correlated systems and its compatibility with active space calculations, its underlying principles suggest a wider applicability extending to the broader field of material science computations on quantum computing platforms.
001046962 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001046962 588__ $$aDataset connected to arXivarXiv
001046962 7001_ $$0P:(DE-HGF)0$$aHahn, Walter$$b1
001046962 7001_ $$0P:(DE-HGF)0$$aShirazi, Reza$$b2
001046962 7001_ $$0P:(DE-HGF)0$$aWalt, Marina$$b3
001046962 7001_ $$0P:(DE-HGF)0$$aPinski, Peter$$b4
001046962 7001_ $$0P:(DE-Juel1)184630$$aWilhelm-Mauch, Frank$$b5$$ufzj
001046962 7001_ $$0P:(DE-Juel1)194613$$aBagrets, Dmitry$$b6$$ufzj
001046962 909CO $$ooai:juser.fz-juelich.de:1046962$$pVDB
001046962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b5$$kFZJ
001046962 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194613$$aForschungszentrum Jülich$$b6$$kFZJ
001046962 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001046962 9141_ $$y2025
001046962 920__ $$lyes
001046962 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001046962 980__ $$apreprint
001046962 980__ $$aVDB
001046962 980__ $$aI:(DE-Juel1)PGI-12-20200716
001046962 980__ $$aUNRESTRICTED