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In the framework of the hybrid quantum-classical variational cluster approach to strongly correlated electron
systems one of the goals of a quantum subroutine is to find single-particle correlation functions of lattice fermions
in polynomial time. Previous works suggested to use variants of the Hadamard test for this purpose, which
requires an implementation of controlled single-particle fermionic operators. However, for a number of locality-
preserving mappings to encode fermions into qubits, a direct construction of such operators is not possible. In
this work, we propose a quantum algorithm that uses an analog of the Kubo formula adapted to a quantum circuit
simulating the Hubbard model. It allows to access the Green’s function of a cluster directly using only bilinears
of fermionic operators and circumvents the usage of the Hadamard test. We test our algorithm in practice by
using open-access simulators of noisy IBM superconducting chips.
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I. INTRODUCTION

Strongly correlated electron materials exhibit exotic phe-
nomena such as high-temperature superconductivity [1] and
Mott-insulating phases [2]. Investigating these effects and
their origins is therefore crucial for promoting sophisticated
material design [3] and building high-fidelity superconducting
qubits [4] and advanced energy storage [5]. Strong correlation
arises due to Coulomb interaction between electrons and can
be captured within the Fermi-Hubbard model [6]. With adding
strong disorder, this model demonstrates yet another intrigu-
ing phenomenon, the many-body localization, in both one and
two dimensions [7-9].

While the Fermi-Hubbard model comprehensively incor-
porates electronic correlations, it is not exactly solvable
beyond one dimension. Numerical methods face an inher-
ently exponential demand in computational resources, when
transitioning to larger system sizes. The landmark paper
on quantum supremacy [10] has sparked great interest in
the research field of quantum computation, which has now
advanced to a playground for sophisticated hardware and
algorithms. Strategies for solving the Fermi-Hubbard model
on a quantum computer have been proposed recently [11,12].
Among them the cluster perturbation methods [13] play a
prominent role. They are capable of mitigating computational
demands by dividing a lattice system into arbitrarily small,
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identical, and disjoint clusters. The idea is to solve one of the
many clusters and extrapolate the result to the full system in
a self-consistent fashion. Specifically, the variational cluster
approach (VCA) [14] can be used to relate the free energy
of a microscopic cluster to the grand-canonical potential of a
macroscopic system. When the latter is found, it provides an
access to the phase diagram of a given material. As the crucial
step, the VCA scheme involves an evaluation of the Green’s
function which describes one-particle correlations in the inter-
acting system. In practical terms it amounts to an evaluation
of the Green’s function using relatively small quantum chips,
which are build up of as many qubits as the number electronic
orbitals contained in a cluster, plus one ancilla qubit.

A common strategy for evaluating the Green’s function of
a correlated system relies on the Hadamard test [15-19]. A
key requirement of this approach is the implementation of
controlled single-particle fermionic operators. To that end, a
mapping from the fermion to qubit Hilbert space needs to
be chosen that allows for a single fermion representation on
a quantum computer; a well-known example is the Jordan-
Wigner transformation.

Recently, local fermion-to-qubit mappings that employ
additional ancilla qubits have gained popularity [20-27], in-
cluding the so-called compact encoding [28]. These methods
are particularly advantageous in two or higher dimensions and
can be categorized into two main types.

The first approach optimizes the Jordan-Wigner transfor-
mation by introducing additional stabilizers. In these methods
[20-22], both even and odd subspaces of the fermionic
Hilbert space remain accessible. The second class of methods
[23-27] has a distinct feature: They construct products of
an even number of fermionic operators, such as bilinears,
while single fermionic operators (in the most cases) remain
inaccessible. As a result, while these latter approaches are
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promising for efficiently generating the evolution operator of
the Fermi-Hubbard model, they pose a fundamental challenge
for implementing the Hadamard test.

In this work, we propose a quantum algorithm that
is rooted in the Kubo formula of linear response theory
[29] and adapted here for quantum circuits. This algo-
rithm, which we coin as “direct measurement,” allows to
access the Green’s function using only bilinears of fermionic
operators. Its construction is based on the algebra of
Majorana operators and as such it is applicable to any local
fermion-to-qubit mapping schemes. Thereby, it is irrelevant
whether a particular mapping encodes the even and/or odd
fermionic Hilbert subspace—our algorithm is agnostic to
those choices. Furthermore, this algorithm does not require
controlled single-particle fermionic operators.

This work is structured as follows. Section II briefly reca-
pitulates the main idea of VCA which may be viewed as a
motivation to the efforts of investigating Green’s functions.
In Sec. III we review how a unitary time evolution of the
Fermi-Hubbard model can be encoded into a quantum circuit,
using both the Jordan-Wigner and one of possible locality-
preserving mappings [27]. We further introduce a powerful
algorithm inspired by linear response theory that superim-
poses the common Hadamard test for measuring the Green’s
function and which is agnostic to the details of a fermion-
to-qubit encoding scheme. We then illustrate the proposed
algorithm by discussing resulting circuits in details for two
chosen mappings.

Section IV discusses a toy model of a two-site dimer, which
we use to demonstrate the advantage of our algorithm. In
Sec. V we present our results of a numerical verification of
the algorithm, obtained with the help of open-access simu-
lators of noisy IBM superconducting chips. We argue that a
scheme based on a direct Green’s function measurement is a
viable, potentially more powerful, alternative to established
methods such as the Hadamard test as it does not require a
construction of controlled single fermionic operators. Thereby
it can be adapted to any fermion-to-qubit encoding beyond the
common Jordan-Wigner transformation.

II. FERMI-HUBBARD MODEL WITHIN THE VCA

In this introductory section we outline the basic idea behind
the VCA [14] and give a context for which the Fermi-Hubbard
model (Fig. 1) is utilized. The recapitulation mainly serves
for the purpose of demonstrating the usefulness of the quan-
tum algorithms aimed at finding the correlation functions of
moderately large clusters and their potential speed-up over
purely classical methods of computation. We also introduce
the Hamiltonian of the Hubbard model and the notation to be
used across the paper.

The VCA is a method that allows for solving many-body
systems in a self-consistent manner. In general, we assume
that a many-body system is described by a lattice Hamiltonian
H of macroscopic size. While the number of qubits needed
to encode the full Hilbert space of H scales linearly with the
number of sites, the VCA enables one to reduce the number
of required qubits by investigating only a small, representative
subset, i.e., a cluster, of the full lattice. These clusters are
disjoint, identical copies of each other, whose Hamiltonian is
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FIG. 1. Two-dimensional lattice representing the Fermi-Hubbard
model at half-filling. Each site can be occupied by at most two
fermions. Dashed lines show the allowed hopping to neighboring
sites. Two fermions occupying a single site experience a Coulomb
repulsion U.

denoted as H'. Since the cluster acts as a proxy to the full
system, meaningful investigations can be carried out with a
relatively small quantum chip.

The Fermi-Hubbard model [6], which is widely used to
describe the physics of strongly correlated electrons, is a pro-
totypical example where VCA can be successfully applied. In
more concrete terms, the Hamiltonian of the Fermi-Hubbard
model takes the form H = Hy(t) + H;(U). It is a sum of a
kinetic short-range hopping term characterized by amplitudes
t and a repulsive on-site interaction of strength U:

A= tel,¢0+ ZUn,mw (1)

(i,)),0

Here the operators ¢; , and clTU destroy or create an electron

with spin o on the ith site, respectively; 7; , = cjﬂc,‘,(7 are
number operators; and the summation in the kinetic term goes
over nearest neighbors.

A microscopically small cluster described by H’ cannot
lead to long-range effects such as magnetism and supercon-
ductivity, which arise in the macroscopic system described
by the full H. In order to impose these effects in the cluster,
we can add symmetry breaking terms to the Hamiltonian
which may promote different superconducting, ferromagnetic,
or charge-density orders. A connection between micro- and
macroscopic systems is then established via their grand po-
tentials. For mathematical details of this approach we refer the
reader to Appendix A. In the following section we proceed by
constructing the unitary evolution operator U(z) = ¢~*#'7 of
the cluster using a universal set of elementary gates.

III. CIRCUIT REPRESENTATION
OF THE HUBBARD MODEL

We start this section by reviewing well-known results in the
literature [12] on how a unitary time evolution of the Fermi-
Hubbard model can be represented by a quantum circuit and
further on introduce an algorithm for the Green’s function
measurement based on the linear response theory.

A. Quantum circuits for hopping and repulsion terms
The circuit representation of any fermionic Hamiltonian
begins by choosing a fermion-to-qubit mapping. Among
these, the Jordan-Wigner scheme is one of the most
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FIG. 2. Hopping circuit to evaluate the term t;; (c;”c o +H.c.) for a time step At with angle 6§ = 1;;At.

prominent examples, known for its simplicity and straightfor-
ward implementation—and for the presence of Jordan-Wigner
strings. In low-dimensional, small systems, it is a perfectly
valid method. Yet, unfortunate cases of nearest-neighbor inter-
actions may trigger local interactions that propagate through
the full system in terms of Z strings. As these additional
terms contribute to errors in quantum simulations, it is often
advisable to choose a mapping that optimally balances qubit
overhead and the ability to preserve locality and overall suit-
ability for the specific problem at hand.

In this regard, locality-preserving mappings, aiming to
avoid the constructing of long Jordan-Wigner strings, provide
a powerful alternative. Famously, the Bravyi-Kitaev mapping
[23] is less prone to nonlocality. In this early landmark pa-
per, it was discussed that only products (or sums thereof)
of an even number of fermionic operators span the algebra
of physical operators. It follows that for a number of more
advanced mappings [24-27], single fermion operators cannot
be straightforwardly constructed either. As the latter are re-
quired by the Hadamard test to evaluate the Green’s function,
the VCA approach becomes harder to implement. It is this
fact that renders our method of a direct measurement of a
response function more physical and versatile as it can be
applied to mappings beyond Jordan-Wigner. In the following
we show the quantum circuits for our algorithm resulting from
the conventional (Jordan-Wigner) mapping, as well as from
the locality-preserving mapping [27].

1. Jordan-Wigner mapping

To construct an evolution operator of the cluster Hubbard
Hamiltonian related to a single Trotter step, one needs to map
fermionic operators to the qubit ones. This can be achieved
in two stages. First, we introduce Majorana fermions, x;; =
Cioc + c; and yi, = i(cis — c:fo), which are Hermitian opera-
tors. They obey the anticommutation relations

{Xio » xj(r/} = {yi(79 yja’} = 28ij606/’
{Xio, yjor} = 0. 2)

At the second stage, the Jordan-Wigner transformation is used
to represent x;, and y;, via the following sequences of X, Y,
and Z gates:

Xip = 1@2(Nc—i)+1 RX® Z®2(i_l),
Xiy = 1®Z(N57[) RX® Z®2i71’
Yir = —]l®2(M —i)+1 RY ® Z®2(i—l) (3)

yiy = _1@2(1\’@—1') RY ® Z®2i_1,

which guarantees satisfiability of the anticommutation rela-
tions (2). Consequently, we define the correlation function for
original fermions,

T A (e C ()
Gy (1) = ((C,Tq(r)ciaf(OD

and for Majorana ones,

- oo’ _ <xia(f)x_'o’(0)) <xia (T)y 6’(0)>
8l (1) = <<yw<r)x§af(0)> <ym(r>y§af(0>>>’ ®)

then the two are related by a unitary transformation,

G (r) = %MTng’ (OM, M= %(1 _ll) (6)
For the sake of generality, we do not imply any time ordering
in the definition of the Green’s functions.

Following Ref. [12], we then present quantum circuits for
a time step At for both hopping and repulsion as per the
Fermi-Hubbard model, Eq. (1). A circuit for the hopping term
is shown in Fig. 2 and a circuit for the repulsion can be seen
in Fig. 3. Here the gate X > here refers to the Y -basis change
gate. A complete list of applied gates in matrix representation
is presented in Table I'V.

For our subsequent discussion of the Green’s function
measurement scheme (see Sec. III D 2) it is instructive to ratio-
nalize the circuit behind the hopping term, shown in Fig. 2. To
this end we note that its representation in terms of Majorana
fermions reads

(Cig (T )Cja’ (0))
4
<c£,<r)c,,-q/(0>>)’ @

oo T i
B = ciycjo +He. = E(yioxja — XigYjo ) (N

The Jordan-Wigner transformation (3) reduces the above op-
erator to

7 = 3 (XnX + Yo Ya)Zow (m, n), (8)

where m=2i+(1—-0)/2, n=2j+(1—0)/2, and
Zyw (m, n) denotes the Jordan-Wigner string,

n—1
Ziw(m,n) = X) Z. ©)

k=m+1

with Pauli operators Xy, Y;, and Z; acting on kth qubit. We can
then introduce unitary Clifford gates S,,,, acting on all qubits k
with m < k < n (its equivalent circuit is shown in Fig. 9), for
which the role is to eliminate the Jordan-Wigner string and
simplify (8) to

Y = 38h, (XX + Y Yo)Spun- (10)

062610-3



BISHOP, BAGRETS, AND WILHELM

PHYSICAL REVIEW A 111, 062610 (2025)

+
it Zﬁ
2
. 7z~ | Z Jai
i (] D g

FIG. 3. Repulsion circuit to evaluate the term U;n; 4n; ; for a time
step At with angle 6 = U;Ar.

The XX and YY terms above commute so that an evolution
operator generated by hf naturally splits into the product
of two. Subsequent unitary transformations using single qubit
gates H and X, transform each term of the sum in Eq. (10)
to the product Z,, ® Z,. After that, the unitary evolution cor-
responding to a single Trotter step of a hopping operator with
an angle 6 = t;;At is realized with the help of Z rotations
and additional similarity transformations with CNOT gates,
as shown in Fig. 2.

2. Locality-preserving mappings

In this subsection we follow the approach of Refs. [27,30]
to design the quantum algorithm for the Fermi-Hubbard
model, which is based on the local fermion-to-qubit mapping
by Li and Po [26] for spinful fermions in two dimensions. In
the framework of their scheme, we encode an L x L physical
cluster as the extended cluster of size (2L +2) x (2L + 2)
incorporating both physical (¢{) and auxiliary (a) fermions
as shown in Fig. 4.

Each unit cell, depicted by either gray or orange squares,
contains two physical fermions (located at black sites) and
two auxiliary fermions (located at white sites). It turns out
that such choice simplifies the implementation of the quantum
algorithm for the Green’s function measurement. Addition-
ally, it produces a square shape of a cluster with lengths
L, =L, =2(L + 1), enabling an efficient construction of the
physical vacuum state within the local fermion-to-qubit map-
ping. By construction, the “bosonization” scheme of Ref. [26]
assumes a torus geometry with periodic boundary conditions.
The latter is needed to formulate the noncontractible Wilson
loop constrains. To comply this periodicity restrictions with

Ao, L+1Q

O
7 1 ar+1,0

a
00 djp ajp

FIG. 4. Cluster of physical (black) and auxiliary (white)
fermions used to implement quantum-classical VCA for the 2D
Hubbard model.

FIG. 5. Encoding four fermions comprising an elementary unit
cell of the VCA cluster in terms of eight qubits. We denote by ¢y,
the qubits associated with physical fermions ¢ and by g, the ones
related to auxiliary fermions a? used for the measurement protocol.
The pair of qubits (q(T'), q(Tz)) is used to encode the Hilbert space
of the physical fermion ¢/, where a spacial index r is omitted for
brevity.

the VCA approach, for which open boundary conditions are
assumed, we add additional auxiliary fermions to all bound-
aries of the cluster. By design, these auxiliary fermions are
not connected by hopping terms—neither between each other
nor to physical fermions. In this regard they are virtual and
only become important for the vacuum-state preparation on a
2D torus within the scheme of Li and Po; see more details
on that in Ref. [27]. With this trick, an implementation of
any physical variational ground state of a cluster, free from
periodicity constraints, becomes possible.

In the local scheme of fermion-to-qubit mapping, one dou-
bles the number of qubits to encode 2?+I» physical states,
cf. Fig. 5. In this way each physical fermion mode ¢{ is
associated with a pair of qubits (¢\)), ¢©)); and the auxiliary
fermion mode a2 is mapped onto the pair (g, §)). Corre-
spondingly, we denote Pauli operators acting on qubits g%
by X, Y9, and Z{®), with s = 1, 2. Similarly, Pauli matrices
X® Y® and Z{ act on auxiliary qubits ¢*). Following the
bosonization approach of Ref. [26], we discuss elementary
quantum circuits that correspond to different hopping terms.
Similarly to our consideration in previous sections we are go-
ing to use Majorana decomposition of fermionic creation and
destruction operators. Namely, we write ¢ = %(x;’ — iyy) for
physical fermions and af = %()"cf — iy?) for auxiliary ones.
The simplest hopping operator to consider is
i
2
When it is placed at a unit cell r/, it can be used for Green’s
function measurements (discussed in more detail later in
Sec. IID2), where it acts as a source term (see Fig. 4).

The qubit representation of such hopping operator reads, cf.
Ref. [27],

Al = —yIxt, (11)

W= —XOFP x y@RD), (12)

The quantum circuit realizing a unitary evolution with the

generator Al is presented in Fig. 6. It can be motivated in the

following way: First, the unitary transformation with H and

X2 gates brings A] to the form Zﬁi)zr(i)Zg)Zﬁ). Further sim-

plification is based on a sequential utilization of the similarity
transformation with CNOT gates:

CNOTW (Z! @ Z7) CNOT') = Z!, i . (13)
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FIG. 6. Quantum circuit realizing the unitary operator e~4r

a. Hopping in the x direction. Next, we construct quantum
circuits for hopping evolution operators of physical fermions.
We start by discussing hoppings in the x direction. The oper-
ator of interest is

X _ ot .o ot o __ i o .0 0.0
Tra =G Cryx + CrixCr = E(yr Xrox — Xr yr+x)' 14
Specifically, we concentrate on the spin up hopping opera-
tor 7. On a cluster with physical and auxiliary fermions,
such hopping operator corresponds to the next-to-nearest hop-
ping. In order to express it in terms of qubit gates using
the bosonization rules for elementary hopping operators (see
Appendix B), we equivalently rewrite it as
T, = SOI5) - flel —xlwl 5l a9)
where we have used that &, 2o, Using relations (B1), one
then arrives at the following representation of 71 in terms of
Pauli matrices:

I e S ZD, T2, 2528, )
The construction of the T} operator can be done along the
same lines with minor changes. Importantly, the expression
for Ty formally coincides with Eq. (8) with qubits g, =

qilT), qn = quT, and the Jordan-Wigner string of length three

given by Zyw = Zﬁng)zﬁm. Therefore, the quantum circuit
to realize an elementary Trotter step associated with the op-
erator 71y is identical to the one shown in Fig. 2. At variance
with the fermion-to-qubit mapping based on Jordan-Wigner
transformation, the hopping circuit involves only five neigh-
boring qubits with the fixed lengths of JW strings, which is
the strong advantage of this local scheme in application to
two-dimensional clusters.

b. Hopping in the y direction. Hereinafter we discuss the
hopping operators in the y direction defined as

o _ !

y _ 07,0 ot 0.0 _ 0.0
Tra = Cr+y + Cr+ycr - z(yr xr+y Xr yr+y)' (17)

To obtain its form in terms of elementary qubit operations, we
follow the same idea as above by representing 73, as the hop-
ping via an intermediate auxiliary fermion af; see Eq. (15).
Equipped with a set of rules for elementary hoppings, cf.
Appendix B, one then obtains the following identification:

y 1 1)y (1)
I = E(X Y,

Dy (1) 2)7(2)y(2)
rt “r+yt Yr? X ) ® YrT Zr¢ X (18)

r+y?t r+y?t:
Once again, minor changes are required to derive spin down
hopping Tr‘L Namely, all spins in Eq. (18) need to be reverted,

except of the operator Zr(? , which has to be substituted by

7@
Tyt o .
The unitary circuit realizing an elementary Trotter step
generated by 6 - TrvT is presented in Fig. 7. It can be ra-
tionalized as follows. First, a similarity transformation with

the unitary X; > ® H, acting, respectively, on qubits qﬁ) and
qgw, maps a triplet of operators applied to auxiliary qubits

in (18) onto the Jordan-Wigner string Zyw = Zﬁ)Zr(?Zﬁ)yT.
As the result, the transformed operator Ty, shares the same
structure with the hopping operator 47" —now built on a pair

of qubits g, = qf,lT), qn = qgfﬁ and joined by the string Zjwy.

Thus the quantum circuit in Fig. 7 mirrors the most general
form shown in Fig. 2.

c¢. Repulsion. The elementary circuit realizing the repul-
sion term U;n;yn;, remains the same as shown in Fig. 3,
provided qubits g;, are understood as g{).

B. Variational Hamiltonian ansatz for the ground state

The correlation functions defined by Eq. (4) presume the
average over the equilibrium density matrix. At zero temper-
ature one is required to start from the ground state of the
cluster at time t = 0. For this reason we will briefly review
the variational Hamiltonian ansatz (VHA) [31], which is used
to construct the ground state.

The defining idea of VHA is to find a unitary opera-
tor U(#), such that under variations of the parameters 6;
from the set & one minimizes the energy expectation value
(WolUT(B)HU (9)|Wy), where |Wy) is a guess state which can
be prepared easily. Identifying an underlying operator H as
the sum of p-independent terms H = Zle Hj, the operator
U (0) is defined over n steps as

n p
U®) = ]_[ ]_[ e ikt (19)

k=1 j=1
) () i (x+)
Dy H H(X: X;|
@ -
qu X% X%
_(2
qe) & &

) Pan)
N

B

eyt D—*¢
o

-HueE

e

FIG. 7. Quantum circuit realizing one Trotter step associated with the hopping operator Tr?
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FIG. 8. Circuit for diagonalizing %(X,,X,,H + Y,Y,11) into
[01)(01] — [10)(10].

In each step k, the p parameters are updated until energy
measurements on |W) = U (60)|Wy) yield minimum values. An
example for a rule set governing the update of 6;; can be
found in Ref. [32].

In the following, we discuss the details of implementing
the VHA, assuming that the quantum circuits in question are
constructed using the Jordan-Wigner transformation. We will
rely on these results later when performing noisy simulations
of Green’s function measurements. On the other hand, the
practical implementation of local fermion-to-qubit mapping
schemes, even for moderately sized clusters, remains chal-
lenging. For an analysis of the VHA circuit depth within the
locality-preserving mapping scheme discussed in Sec. I[IT A 2,
we refer readers to the original Ref. [27].

C. Measuring ground-state energy

Finding the minimum expectation value (Wo|U'(9)
HU (0)|Wy) as pointed out in the previous section requires
energy measurements. From Eq. (1) we find terms for hop-
ping and repulsion, which in the following we refer to as Hy
and Hy, respectively. Hence, schedules for measurement of
hopping and repulsion energy, cf. Ref. [11], are reviewed.

Measurements of repulsion energy are done by measuring
each qubit in the computational basis. Since we operate within
the Jordan-Wigner framework, repulsion terms are mapped
to the matrix [11)(11],,, where m, n denote the inspected
orbitals belonging to one parent site. Hence, the energy equals
the probability to find both qubits to be in state |1).

Measurements of kinetic energies depend on the hopping
direction, which is rooted in the way the Jordan-Wigner
strings are chosen in the mapping (3). For one of the pos-
sible choices, horizontal hoppings are considered less costly
in terms of gate depth since Jordan-Wigner strings can be
neglected, whereas vertical hoppings may lead to long Jordan-
Wigner strings.

Following Ref. [11], horizontal hopping map to the matrix
%(XanH + Y,Y,+1). In order to perform computational ba-

sis measurements, the unitary that diagonalizes %(XanH +
Y,Y,+1) into |01)(01] — |10)(10| is shown in Fig. 8. Desired
energy expectation is thus the probability of measuring |01)
minus the probability of measuring |10).

On the other hand, a kinetic energy term h?° describ-
ing vertical hopping is mapped to the operator (8), which
contains an additional Jordan-Wigner string. As discussed in
Sec. III A 1, the latter can be eliminated by similarity transfor-
mation via the unitary S,,, shown in Fig. 9. Afterwards, one
can measure two terms in h;’j"/ separately. The quantum cir-
cuit to implement the measurement of the first term, iy;; X5/,
is given in Fig. 10. It is based on the following similarity

qln | — qm
P - —_— M JanY
: Sun = o

— — D
G | - n

FIG. 9. Definition of the operator S,,,, with the purpose to re-
move Jordan-Wigner strings. It is nontrivial for m —n > 2 and we
setS,11., = 1.

transformation of this operator:

iyia-xja’ = S:m (ZmZn)Smns
Smn = (HmHn)Smn (20)

The expectation value of this operator is then reduced to the
average parity of qubits m and n. A measurement of the second
term in the hopping term, —ix;sy o, is implemented along the
same lines with the only difference that the Hadamard gate is
replaced by X ».

D. Green’s function measurement

We present two routes to measure the Green’s function.
The orthodox way goes back to the Hadamard test circuit
originally proposed in Ref. [15]; see Fig. 11. Another one
makes use of linear response theory, particularly the Kubo
formula, which we present afterwards.

1. The Hadamard test

The most standard Hadamard test uses a quantum circuit
with a single ancilla which generates a random binary variable
(£1) whose average value gives Re(W,|U|WV,). Here |W,)
denotes an initial quantum state and { is an arbitrary uni-
tary acting on |W,). In application to the Green’s function
measurement within the VCA framework, the wave function
|\W,) represents an (approximate) ground state of a Hubbard
cluster and one sets U = UT(r)avU(r)aM = o0,(1)o,, where
o, may refer to any of the Hermitian Majorana operators
X, Yu- The averaged real part of U/ then coincides with the

o | @A

FIG. 10. Measurement of iy;,x;, term which is reduced to
(ZisZj,) after a similarity transformation.
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FIG. 11. Quantum circuit for measuring correlation functions
C,.v. The first four qubits gy, ..., g3 represent the physical system,
whereas the last qubit in state |0) represents the control qubit.

retarded correlator of two Majoranas, that is,

Religy, ()] = 5(Wal{oy(2), 0.} | W,). (2D
The corresponding circuit to evaluate the Green’s function
within the above scheme is given in Fig. 11. Here qy, ..., g3

are qubits representing a small physical system (e.g., the four
qubit cluster), while the last qubit is an ancilla whose initial
state is |0). Within the logic of Hadamard test the correlation
function g,,(7) can be then estimated as

Religy, ()] =P,y M =0,7) = P, (M =1,7), (22)

where P, (M, t) denotes the empirical probability of mea-
suring the ancilla in the state M at time t.

The Hadamard test circuit requires four blocks of con-
trolled evolution, which include computationally costly two-
qubit gates [33].

Recently, Endo ef al. [34], presented a more elegant ver-
sion of the Hadamard test (the latter finds its roots in the
pioneering work [15]), whose circuit is presented in Fig. 12.
It does not require a controlled evolution and neither does
it require an evolution of the form U'(z) (cf. Ref. [19] for
further generalizations). On the other hand, the possibility of
constructing controlled single-particle fermion operators is a
defining feature of their algorithm.

In the following subsection we discuss the direct measure-
ment scheme which is more physical in a sense that the latter
can be applied to more sophisticated, particularly locality-
preserving mappings (e.g., the one discussed in Sec. II1 A 2)
that do not allow for single Majorana fermion operators.

0 % | U@ | o,
o) -} ————[nHA

FIG. 12. The advanced Hadamard test only requires one evolu-
tion U (7) without any control ancillas.

2. Direct measurement

In this subsection we propose an alternative approach to
evaluate the Green’s function on a quantum computer, which
we refer to in what follows as the direct measurement. We will
see that this approach can reduce the depth of the circuit by at
least a factor of two. Importantly, it requires no assumption on
the initial density matrix pg of a simulated many-body system
and, in contrast to the standard Hadamard test, relies merely
on the forward uncontrolled evolution operator U (t). Further-
more, we use the two-site dimer toy model to demonstrate the
direct measurement and probe its potential for being a superior
method for accessing the system’s Green’s function.

Exploiting Green’s functions for calculating observables
and order parameters is motivated by linear response the-
ory (cf. Appendix C). Let H'(t) = H + V (¢) be our system
of interest, with H being the stationary, time-independent
part and V() =), ®;(r)A; being the time-dependent per-
turbation, whose exact form we specify momentarily. Linear
response theory describes how the system reacts to a given
perturbation V (¢), where ®;(¢) is the interaction strength of
operator A;. If we assume a sufficiently weak perturbation,
then the change in an expectation value of any Heisenberg
operator A;(t) defined relative to the full Hamiltonian H'(z) is
linear in the perturbing source ®(¢). This is formulated as

$(A) = Z/dt,)(ij(t;t,)q)j(t/)a (23)
i

where x;;(¢;¢') is the response function given by
xij(t. 1) = —i0(t — ") ([Ai(t), A;()]). (24)

Here operators A;(t) evolve under the action of the nonper-
turbed Hamiltonian H and, as before, is averaged over an
initial density matrix pg. In particular, for the perturbation
localized in time at time ¢’, one writes ®;(t) = ®;(t — ')
and arrives at the relation

SUAD) =Y xijt:t)®;, (25)
j

which can be used to extract the response function in the
demonstration. One assumes here that ®; is relatively small
so that nonlinear effects can be disregarded.

To adapt this general idea to the Green’s function mea-
surement of ¢ fermions in our system, we couple them to
an auxiliary spinless d fermion with the Hamiltonian H; =
€4d’d and introduce the hopping operator

A =d'cjs +cl,d (26)
acting on the jth fermion, while the ancilla qubit stores the

state of the d fermion. The explicit form of the perturbation
V (¢) then reads

V()= ®7(1AT =Y o50ld o +clydl. (27
J J

where again @7 (¢) is the external field acting on the jth
fermion with spin o. Furthermore, considering the response
function (24) we may assume ¢' = 0 and ¢ > ¢’ such that we
can neglect the ' dependence. The commutator then becomes

07 O = —i((A7OAT) - (ATAT@). @28

062610-7



BISHOP, BAGRETS, AND WILHELM

PHYSICAL REVIEW A 111, 062610 (2025)

Using Eq. (26), this leads to
X7 (1) = — i{(d"(t)cio (1) + cl, (1)d @) - (d'cjor + cld))
+i((d cjor + clyd) - (d (H)eio (1) + (DA ().

If we assume the d-fermion orbital to be occupied, then it
follows that (d7(t)d) # 0 and (d(¢)d") = 0. Hence, the above
equation simplifies to

X5 (@) = —ild' (1)d cio (1)ct,)) + itd d (e orcl, (1)), (29)

Wick’s theorem can be used to write the four-point correla-
tors in terms of a combination of two-point correlators. The
only nonzero two-point correlators are (d'(t)d), (ci(t)c;),

(d*d(1)), and (c;c] (t)). It then follows that

X537 (1) = —ild (0)d) cio (1)cly,) + i(d d (D) cjorc), (1),
(30)

where (d7(t)d) and (d'd(t)) equal €« and e’ respec-
tively. Finally, we arrive at

X0 (6) = —ie " (cig ()cl,) + ie 7 (cjorcl, (1), (B1)
The above relation can be represented in the equivalent form:

X5 (6) = sin Al{cio (1), ¢l }) = icos Aleip (1), ¢l 1), (32)

where A = ¢4¢. Since the energy of the d fermion €, is
quasiarbitrary, one may vary the phase X to recover two in-
dependent Green’s functions. By setting A = 7 /2 one obtains
the retarded Green’s function given by the anticommutator,
while the choice A = 0 leads to the so-called Keldysh correla-
tor expressed via the commutator of two fermion operators.
When it comes to the actual measurement protocol using
the outlined linear response scheme, it is advantageous to
perform the measurements in the Majorana basis and use the
relation (4) to reconstruct the Green’s function of complex
fermions afterwards. As an example, let us consider the mea-
surement of the correlator of two Hermitian operators x;, (¢)
and y;,-. To this end we introduce two Majorana fermions,
xg =d+d"andy,; = i(d — d"), associated with the auxiliary
d fermion and define hopping operators as follows, cf. Eq. (7),
o o 1
A7 = Exia X4, Aj = zyjar Xg. (33)
Repeating the steps leading to the intermediate result (30),
one finds that for such choice of hopping operators Xi‘;"’(t)
changes to

X5 (1) = = 5 (xa000) i (09)
+f—‘<xdxd(r)><y,-g/xw (). (34)

Additionally, the correlator of an auxiliary Majorana fermion
becomes (x;(t)x;) = ¢/“'. This means that for the Green’s
functions of Majorana operators we can use exactly the same
final relation (32). In particular, the retarded correlator reads

3 (Ui 0, vjor)) = x5 O oy o (35)

For the later purpose it is advantageous to rewrite the above
relation as

(ixiax.d>d>(t/a €4) ’ (36)
sin CID?

eqt=m/2

1
§<{xia(t)’ yja/}> =

where (- - - )¢ refers to an average in the presence of a pertur-
bation. Note that within the linear response theory framework
the denominator needs to be substituted by just dD‘j’ In this
case the relation (36) follows from Egs. (25) and (35), where
(A7) = %(ixiaxd)q) and we took into account that (A7) van-
ishes in the absence of perturbation. In Appendix D we
evaluate the response (A{) to the source field in all orders and
prove the validity of Eq. (36) at arbitrary @9 .

Our primary focus in this paper is on the retarded Green’s
function given by the anticommutator (36), since the latter
eventually enters into the VCA scheme outlined in Sec. II.
However, the full set of possible Green’s functions can be
evaluated using the proposed algorithm. For instance, for the
Keldysh correlator of Majoranas one can write

(iXigXa)o(t, €4)

- 37
sin CID_‘]? 37

_é<[xia @), yja’]> =

€4 =0

Then other correlators, such as g‘{j"/(t) defined in Eq. (5),
can be reconstructed from the retarded and Keldysh Green’s
functions. Additionally, the best choice for the strength of the
perturbation is d>‘]’ = /2, which leads to the strongest re-
sponse and is used for quantum computations in what follows.

Equations (36) and (37) summarize the main result of this
subsection. In what follows we present our quantum algorithm
which enables the measurement of these correlators using
both the Jordan-Wigner and one of local fermion-to-qubit
mappings, discussed previously in Sec. IIT A 2.

a. Jordan-Wigner framework. The quantum circuit (see
Fig. 13), which accomplishes the measurement of correlators
within the Jordan-Wigner mapping, can be rationalized as
follows. Right after the initialization of a quantum computer
to the ground state with the help of VHA (not shown) one
applies the perturbation with the potential V(¢). It can be
achieved in one Trotter step yielding the unitary

1 i
eXp (E (D(Ir ng' .Xd> = S;O‘/,N(. eXp (—Eq)j Xja’XNL) Sja’,NL.-
(38)

Its circuit representation is analogous to the one describing the
evolution under the hopping term; see Fig. 2. In this context,
it entangles the ancilla qubit used to represent the d fermion
with the qubits’ states representing the cluster. Subsequent in-
dependent evolutions of the cluster and the d fermion are then
followed by the measurement of an operator AY = éxiaxd.
The way to average such operator has already been described
in Sec. Il C: In a few unitary transformations (A7) can be re-
lated to the average parity of two qubits, (Z;;Zy,), see Fig. 10.

b. Bosonization framework. To construct the measure-
ment circuit for the correlates of two Majoranas, e.g.,
({xey (), yr1(0)}), which generalizes the circuit shown in
Fig. 13, one needs to know a representation of operators,

i
Al =Lytsl, (39)

i
Ai = —)crl)_cl >

2
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i X
G

C]Ni.— 1

s

FIG. 13. Measurement of the correlator ({x;,(7), yjo'(0)}). The unitary U, refers to the Trotterized evolution under the Hubbard cluster
Hamiltonian (1). While the Z rotation with the angle 6 = d)_‘;' is due to perturbation, the Z' rotation with the angle te; accounts for a free

evolution of the d fermion.

in terms of Pauli matrices. Note that we have chosen the
fermion af, as the auxiliary one. It is located in the di-

rect neighborhood of the physical fermion cf, (see Fig. 4);

therefore the operator AI, becomes local. The latter has been
already analyzed, see Eq. (12), and the corresponding unitary
circuit is presented in Fig. 6. In what follows, we discuss the
nonlocal bilinear A¥. Its representation involves the Jordan-
Wigner string connecting sites associated with operators o
and af,, visualized by a green arrow in Fig. 4. Let r' =r +
ax — by, where a and b be positive integers. One can use a
corner site located at r + ax (shown in red in Fig: 4) to split
A} into a product of two bilinears,

) X (FLEL - (40)

r+ax r+ax

i
Al = _5@)—&

Each pair of Majorana operators above can in turn be
bosonized following the same route as how hopping operators
T were constructed in ITL A 2. Specifically, for the horizon-
tal hopping over a distance a one obtains

O ) = X)) X 2y X Vi Ziys (4D
where the horizontal Jordan-Wigner string is defined by
a—1
Ziw =1 @2 Ao Zm), @)

n=1
and spans both sets of qubits. Analogous considerations in the
case of vertical hopping operator over a distance b yield

Ao _ b—1y () (1) 7(2) 7() £ (2)
l(xr’errax) - (_]) er Yr+ax¢ x Yr’i ZJW Xr+axT' (43)

The vertical Jordan-Wigner string spans the second set of
qubits only,

b—1
) _ ~(2) -(2) 2)
ZJW - Zr+axT 1_[ (Zr+ax—ny¢zr+ax—ily7)' (44)
n=1

Combining intermediate results (41) and (43) leads to a Pauli
representation of the desired operator we wish to measure:
Ao CEV 0 0 0y PO 4
r= 775 r¢X(JW rax JW)Xr’J, AISEEN C )
For the sake of clarity operators are now ordered along the
path going from r to r’ as shown in Fig. 4.
In order to efficiently measure an average (Aﬁ), one can
first apply simple unitary rotations H and X, acting on

(2)

qubits qﬁll) and g respectively. They will transform the

r+axy’
operator A} into the type of expression §, namely
PTG Vs (2529 x 7O7® 46
r= 775 gw Zyw) X L Ly (46)
The updated Jordan-Wigner strings read
7(x) _ (1) 7(x)
Zyy = Z, Ziw- 47
b—1
5(¥) 7(2) 0 _ 7(2) )
ZJ%V = Zr+ax1‘ZJ{)V - l_[ (ZrJraxfrzinrJraxfnyT)' (48)
n=0

After the above transformation one may use the same scheme
as it was previously discussed in Sec. I[II C. Similarity trans-
formations with operators Sy alongside two subsequent
single qubit rotations with X, reduce A} to the product of
just two Pauli Z operators,

A =8"Z0ZE)s. S = (X3)0)(%s)r SSiw- - (49)
The resulting quantum circuit realizing such measurement is
shown in Figs. 14-16, where we have defined operators Sy —
their role is to remove Jordan-Wigner strings acting along
horizontal and vertical directions. Due to the local type of the
fermion-to-qubit mapping, the number of CNOT gates used in
the S operator scales as 4a + 2b.

IV. TWO-SITE DIMER MODEL

In this section we introduce a two-site dimer [35] that
serves as our toy model for which we evaluate the Green’s
function. Following the general framework outlined in Sec. II,
it can be seen as the smallest nontrivial cluster, so that the
variational cluster approximation is able to deliver physically
reasonable results. Specifically, within VCA such minimal
cluster is sufficient to reproduce the Mott insulating transition
in the Hubbard model. On the other hand, in order to recover
the d-wave superconducting phase, one needs at least four
sites per cluster [36].

The two-site dimer model consists of a Hubbard site that is
coupled to a bath site. Its Hamiltonian at half-filling given by

. U
H' =Hy+Hy = —t ;(c;,b(, +blco)+ E(n§ —2n,),

(50)
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_(2) [
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t
* )
—(1)
qr’i
_(2
q.
:1l) e_iGArT’ (7+)
Dry Zt-ie_d
g
r/
—J U J

K y

Perturbation Time evolution

Measurement

FIG. 14. Quantum circuit realizing the measurement of the correlator ({x,(7), yr+(0)}), partitioned in a perturbation stage, time evolution
and finally a measurement stage. This circuit superimposes the one shown in Fig. 13 in the case when a locality-preserving mapping to encode
fermion operators in terms of qubits is used. The final measurement block is used to estimate the average (A}) defined in Eq. (39). Here two
unitary operators, S}"W) and S}{;\),, which are used to remove the JW strings, jointly operate on the qubit cjﬁ)ax , (red line). The latter is used to

encode the auxiliary Majorana a} rox

where ¢ is the hopping energy and U is the Coulomb repulsion.
The field operators ¢, ¢, respectively creates or destroys a
fermion with spin o at the Hubbard site, while bj,, b, respec-
tively creates or destroys a fermion with spin o at the bath site
andn, =), cf, ¢, . Last, the linear n, term in Hy; stems from
a chemical potential u© = U at half-filling.

Qubit ordering is shown in Fig. 17 and is chosen in a way
that allows for decreasing circuit depth; see Sec. IV A.

Investigating the dimer at half-filling allows us to concen-
trate on just 6 of 16 possible state configurations. With |0)
being the vacuum state, following states |1), |2), ..., |6) are
possible as two electrons reside at the dimer:

1) =c]ci]0), [2) =cbl10), [3) =b|b}I0)

|4) = b cl]0), (51)

—o— o e—
! 7D
: qu .
530 |
| 10 .
i qr+(a—l)xl
@' @ %
qr+axl
FIG. 15. Expansion of the Sy circuit element, for which the role
is to remove JW string in x direction.

15) = blcl10), 16) =b|c]|0).

at the “corner” site where vertical and horizontal JW strings meet; see Fig. 4.

In matrix form, the Hamiltonian (50) thus reads

0O —t 0 ¢+ 0 O
-t ¥ - 0 0 0
0O —t 0 ¢t 0 O
I
H==1¢v o + ¢ o of ©%
o 0o o0 0 ¥ o
0o 0 o0 0 0 %
with the ground-state energy
Ey=—3(U 4+ VU? + 6412), (53)
corresponding to the eigenstate
VU? + 6412 — U
WyocCqh+BD+12) +14). C=——"—,
(54)
e a0y —e————

2) 9
qr+axT

S "
qr/l
¢

FIG. 16. Expansion of the S\ circuit element, for which the role
is to remove JW string in y direction.
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qo a4 b a3
Qubit order

FIG. 17. Indexing qubits over one Hubbard site and and bath site.

up to a normalization factor. Last, we find the expectation
values of Hy and Hy to be

1612
= e o
and
(Hy) = —£<1 + L) (56)
4 VU? + 6412

As required by linear response theory, we need to start from
an equilibrium state, i.e., the ground state. Consequently, we
present a route to find the ground state via the VHA.

A. Ground-state preparation

For the sake of finding the ground state of the dimer
system, we employ a technique known as the variational
Hamiltonian ansatz [31]. Starting from the ground state of the
cluster |\Wy) in the noninteracting limit U = 0, we aim to find
the interacting system’s ground state |W) as

P
W(a, B)) = [ [P et 1), (57)
j=1

where «;, B; € R are the variational parameters. The ground
state |Wp) is a Slater determinant. For instance, Eq. (54) at
U = 0 can be written in terms of two f fermions,

L
V2

which are linear superpositions of b and c.

An initialization of the quantum chip in a Slater determi-
nant state most generally can be constructed from an initial
one, [0,0,...,0), by the so-called Given’s rotations, [12].
However, for the two-fermion state (58) a much simpler cir-
cuit is sufficient. One can verify by direct inspection that the
circuit shown in Fig. 18 transforms the vacuum state into |\W).
Moreover, it is possible to find the exact matching between the

(W) = fI {10}, fi=—=(ci+b)), (58

10}
10},
10),

10),

ik

FIG. 18. Quantum circuit to prepare a Slater determinant as a
trial ansatz for the VHA.

FIG. 19. Circuit identity as used in the two-site dimer.

trial and actual ground-state functions already for the minimal
depth VHA, i.e., with p = 1. Therefore, we find the full circuit
to prepare the ground state is a single sequence of the circuit
shown in Fig. 18, followed by a variation of the hopping
circuit, cf. Fig. 2 and finalized by a simpler variation of the
repulsion circuit, Fig. 3.

At this point we note that the evolution operator over a time
step At under the interaction Hamiltonian Hy, see Eq. (50),
reads

U(®) = CNOT™ . Z5) . CNOT™, (59)

with angle 6 = U - At. A difference from the repulsion cir-
cuit on Fig. 3 comes from the extra term Un, in the present
choice of Hy, which effectively leads to the reduction of
two single-qubit Z rotation gates. Furthermore, if one of the
natural two-qubit gates on the hardware is a controlled-phase
gate, CT(60), then the unitary (59) can be simplified to

U®) =2y - 255(0/2) - CTY, (60)

up to a global phase. The equivalence of the two circuits in
Eqgs. (59) and (60) for U (9) is presented in Fig. 19.

The full circuit to prepare the VHA ground state is pre-
sented in Fig. 20. Comparing Fig. 20 to Figs. 3 and 2, we
reach a reduction of two two-qubit gates for the repulsion
compared to the scheme in Fig. 3 and another reduction of
eight two-qubit gates for the hopping scheme. Finally, the
variational energy reads

E@. B)=—2rcosE — L (1—sin% sin4 61)
o, B)= 0052 7 s1n251n B,

which depends on just two parameters, « and B. Fig-
ure 21 shows the corresponding energy landscape. For direct
comparison to analytical values, we refer the reader to
Appendix E, Fig. 27.

B. Analytical formulas for the Green’s function

Next we discuss the analytical results for the Green’s
functions of the two-site model in order to benchmark them
with our circuit simulations which we review in the next
subsection. Following the ordering of fermion states under
Jordan-Wigner mapping shown in Fig. 17, we introduce a set
of eight Majorana operators {x,, y,} so that

CT = %(_XO —_ iyo), bT = %(-xl - iyl)s (62)
¢, =3 —iv). by =50 —in),

with n being a composite index accounting for both site and
spin. Correlation functions of interest take the form given by
Egs. (4) and (5). Because of spin symmetry we find them to
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10, H X |
10, H X}

FIG. 20. Reduced quantum circuit for finding the ground state of a correlated system. At the end of the circuit we are left with the interacting

ground state of the two-site dimer.

be block-diagonal with respect to spin indices,

e (@m0 (i 0)
ig (’)—(<y1<r>xo<0>> <y1<r>y1<0>>>’ ©3)
and

by — (2(Dx2(0))  (x(1)y3(0))

i8 (’)—(<y3<r>xz<0>> <y3(r>y3(0)>>’ (4

with two blocks being mutually equal, gt (t) = g*¥(z). Other
nonzero correlators follow from the symmetries

(xi(T)xi(0)) = (vi(2)yi(0)), Vi
xi(0)yir1(0)) = (g1 (T)yi(0)), i=0,2.  (65)

Additionally, the self-adjoint property of Majorana operators
implies that

(xi(T)y;(0)* = (y;(0)x; (7)), (66)

and the same for x-x and y-y correlators. Therefore, the re-
tarded correlator reads

({xi(7), y;(0)}) = 2Re (xi(7)y;(0)),

T > 0. 67)

FIG. 21. Energy landscape for the two-site dimer for finding its
ground state via the variational Hamiltonian ansatz with angles o
and g shown for t = 1 and U = 4. The energies were evaluated on
Qiskit’s noisy Aer simulator of the FakeKolkataV2() backend, an
open-access simulator of the corresponding superconducting device
ibmq_kolkata provided by IBM. The optimum is lying very close to
theoretical values o, = —0.92 and 8, = 0.39 found from Eq. (61).

We can evaluate the above correlation functions exactly
using the Lehmann representation. Starting from iG™ (t) =
(\Il*|UT(t)in(t)yj|\ll*), where |W,) is the ground state, we
use the eigenstate decomposition of the evolution opera-
tor, U(t) = Y2 |m)e~"En' (m|, with D = 4" being the Hilbert
space dimension of a cluster. It then follows that iG~(¢) =
P it (W, |x;|m)e~En (mly;|W,). The eigenstates |m) can
be obtained by exact diagonalization of H’, cf. Eq. (50), which
renders the two-site dimer Green’s function amenable to an-
alytic treatment. The correlation functions evaluated in this
manner read

772 2
(xo(T)x0(0)) = e~ 172 (cos LU Ot ) sin r—U1>,

4 ut, 4
(68)
i U [(U? + 3242 U
(1 (01 (0)) = ¢~ 570 (cos e % sin %)
69)

and
i 2it U t U
(Xo(T)y1(0)) = 4e™ 172 (U—’2 cos % ~ g sin %) (70)

where two additional energy scales,

U =vU?*+ 1612, U, =+ U? + 6412, 71

were introduced to shorten the results.

C. Quantum circuits for direct measurement of the two-site
dimer Green’s function

In accordance to Sec. IIID 2, we provide quantum circuits
for the direct measurement of the Green’s function. The y;-y,
correlator is directly measured when employing the circuit
shown in Fig. 22. In turn, circuits for measuring ys;-y; and
y3-x, correlators are shown in Figs. 23 and 24, respectively.
To implement the unitary evolution operator, U,, one applies

do

9

U,

(#]

- {EH 2z HuHA

FIG. 22. Circuit for evaluating the ({y>(7), y2(0)}) correlator.

D
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=]

B

f

e 1 Z HH D
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do
q
U
5]
© ) HE

o b L

FIG. 23. Circuit for evaluating the ({ys(7), y3(0)}) correlator.

N

the Trotterization scheme with a duration of a single step
being At. The one-step evolution operator can be constructed
following the same sequence of gates used in VHA circuit, see
Fig. 21, with angles « = UAt and 8 = —tAr.

V. RESULTS AND DISCUSSION

We have tested the proposed algorithm for the direct mea-
surement of fermionic correlation functions using an open
access Qiskit’s noisy simulator of the superconducting IBM
chip (ibmg_kolkata). The numerical results of these simula-
tions are presented in Fig. 25, where data points correspond to
the Green’s function of the two-site dimer model in the range
of 25 Trotter steps plotted against the analytical Green’s func-
tion; see Egs. (68)—(70). The chosen parameters are V = 1,
U=4V, ® =x/2, and €46 = w/2. We have relegated the
description of implementation details (including an overview
of used error mitigation techniques) of the simulated quantum
processor to Appendix F.

It can be seen that 25 Trotter steps are sufficient to have
a decent overlap of measurement points and the analytic
correlator up to time t ~ 8. Single-qubit gates take typical
operation times of 20 ns, two- and three-qubit gates may be
designed with operation times of typically 100 ns. It is thus
crucial to reduce two- and multiqubit gates as they appear
when a standard Hadamard test to measure the Green’s func-
tion is implemented as much as possible to keep operation
time short and quantum state fidelity large. One needs to
stress here that a discrepancy between analytical results for the
Green’s function and the outcome of numerical experiment
(see Appendix F), which becomes pronounced at long times,
originates mainly from the infidelities of two-qubit entangling
gates incorporated into the model of Qiskit’s noisy simulator.
By itself, the algorithm delivers the exact Green’s func-
tion under a sufficient degree of Trotterization, as proved in
Appendix D.

do

9

o | m] ("
L&) *

A
DB BB E D

FIG. 24. Circuit for evaluating the ({x3(7), y2(0)}) correlator.

It is worth noting the important universality feature of the
proposed algorithm. Its formal construction, which is pro-
vided in full details in Appendix D, is based entirely on the
algebra of Majorana operators. Therefore the algorithm can be
utilized within any compact fermion mapping scheme. While
the local encoding due to Li and Po [26] was used in this paper
for the sake of illustration, the Derby-Klassen approach [28]
reviewed recently in Ref. [37] can be applied on equal footing
[38]. For any of these two mappings an estimation of the
Green’s function via the direct measurements involves manip-
ulations with the Jordan-Wigner string operators (see Fig. 14).
Their length, however, grows only as the distance between
two lattice sites, r and r’, which has to be contrasted with the
conventional Jordan-Wigner mapping. In the latter case the
advanced Hadamard test and the direct measurement scheme
are of the same complexity. This can be seen from a simple
comparison of two quantum circuits shown, respectively, in
Figs. 12 and 13. Both algorithms require a single uncontrolled
unitary evolution operator together with either four or three
Jordan-Wigner strings to implement two measured Majorana
operators.

It would be also very interesting to extend our scheme
of direct measurements to multipoint fermionic correlation
functions following recent ideas of Ref. [39], including so-
called OTOC correlators [40,41], which are extensively used
to characterize many-body quantum chaos in Majorana SYK
models [42] and beyond.

To conclude, we have presented the quantum algorithm
that is motivated by the linear response theory to evaluate
the Green’s function of the Fermi-Hubbard model on a quan-
tum computer. The number of required measurements scales
polynomially in the number of sites N, within the cluster and
the number of qubits scales linearly in N.. The algorithm
is superior in terms of two-qubit gates as well as operation
time when compared to the standard Hadamard test, and has
the potential to outperform the latter in terms of gate count,
operation time and thereby fidelity of measured quantities.

Directly measuring the Green’s function is also a power-
ful alternative to the advanced Hadamard test, provided any
compact fermion-to-qubit encoding scheme is used, since it
obviates the need of constructing ancilla-controlled single
fermion operators.
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FIG. 25. Correlators y,-y,, ¥3-y3, and x3-y, evaluated in 25 Trotter steps (red dots) of the duration At = 0.314. A shaded area (gray)
indicates the standard deviation over 100 repetitions of executing quantum circuits. The solid blue curves correspond to the analytical
results, cf. Eqs. (68)—(70), where we account for the symmetry relations (65). System parameters are chosen tobe V =1 and U = 4V. The
correlators were evaluated on Qiskit’s noisy Aer simulator of the FakeKolkataV2() backend, an open-access simulator of the corresponding
superconducting device ibmgq_kolkata provided by IBM. For simulation times t < 3 the data points resemble an almost noiseless simulation,
after which accumulated errors become significantly more difficult to mitigate.

APPENDIX A: VARIATIONAL CLUSTER APPROACH

In this Appendix we outline foundations of the VCA.
Following Luttinger and Ward [43], one can consider the
grand-canonical potential of interacting fermions to be a func-
tional of the Green’s function G and the self-energy X,

%[G, 2] = —Trln (G;' — X) — Tr(GE) + ®[G], (Al)

where G !is the noninteracting Green’s function and ®[G]
is the Luttinger-Ward functional. Diagrammatically, the lat-
ter can be defined as a sum over all irreducible two-particle
diagrams, referred to as skeleton diagrams (Fig. 26). In the
expression above both the Green’s function, G‘;]ﬂrz, and the
self-energy, E;"]’iz, have to be understood as matricies in po-
sition, spin and (Matsubara) time domains, with Greek letters,
o = (i, 0), being used as combined indices in lattice and spin
spaces. The functional €[G, X] achieves its stationary value
at the physical G and X. In particular, a functional derivative
of the Luttinger-Ward functional gives the diagrammatic ex-
pansion for the self-energy,

3P[G]/6G = X[G]. (A2)

This relation guarantees that §2¢[G, X£]/3G = 0. On the other
hand, optimization over the self-energy yields the exact Dyson
equation,

UG, ]

53 0= (G,' —%)G =1. (A3)

O <&
+ 4+ -+

FIG. 26. The Luttinger-Ward functional ®[G] is a sum over
closed two-particle skeleton diagrams. The first summand is a
particle-hole pair interacting with itself, the second summand are
two particle-hole pairs interacting with each other once, and the
third summand are two particle-hole pairs interacting with each other
twice.

® =0

The variational principle outlined above can be simplified if
one assumes that one can resolve (A2) by defining the Green’s
function G = G[X] in terms of the self-energy. The functional
(A1) then reduces to

Q[X]=-Trln (G,' — ) + F[Z], (A4)

where we have introduced the Legendre transform of the
Luttinger-Ward functional,

F[X] = D[G[X]] — Tr(ZG[X]), (AS)

which satisfies §F[X]/6X = G[X]. It follows that Q[X] is
stationary at the physical self-energy, since the condition
62¢[X]/8% = 0 constitutes the Dyson equation (A3).

The Luttinger-Ward functional, and hence F[X], is not
known in general [44], cf. Ref. [42]. However it is universal
in the sense that it is defined only by the interaction part of the
Hamiltonian, H;(U), and is independent of Hy(t). This obser-
vation has motivated Potthoff to restrict the class of variational
self-energies to those which optimize the functional Qy[X]
for the reference system of disjoint clusters described by
the Hamiltonian H = Hy(t') + H,(U). Denoting the (exact)
solution of this optimization problem by Xy, one can relate
the original functional €¢[X] of the physical system to the
reference one, Qpy = Qy[Xy], by a simple relation

QEe] = Qv — Trin (Gy'' — E¢) + Trln (G'y' — Zy),

where Gj, represents the free fermion propagator of a cluster.
The above approximate functional can be rewritten in the
Fourier space with the help of Matsubara sums and treating a
single cluster as a unit cell of the infinite size physical system,

Qi[Te] =Qy =T ZTr In(1 — kG'(wy)), (A6)

wp, kK

where G'(w,) = (iw, —t' — Xy (con)f1 is the cluster Green’s
function expressed through the corresponding self-energy
with Vi = t’ — ti being a matrix of intercluster hopping terms.

The self-consistency scheme of the VCA then substitutes
the variational principle in Eq. (A3) by optimizing (A6) over
intercluster parameters t'. The latter may include different
mean-field order parameters related to expected patterns of
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symmetry breaking, which are not a part of the microscopic
Hamiltonian (1). Such optimization procedure over t’ requires
an efficient evaluation of the Green’s function G, which turns
out to be the computationally most demanding task and is
thereby delegated to quantum hardware. Indeed, let N, be the
number of sites per cluster. On taking into account spin, the
dimension of its Hilbert space grows exponentially as D =
4Ne | thus brute-force classical computations need to operate
with D x D linear problems. On the other hand, an alternative
computation of a cluster Green’s function G’ using a quan-
tum circuit requires measurements of only O(N?) site-to-site
correlation functions, while the number of qubits scales as N,.
Based on this idea, we show in the remainder of this paper an
efficient route to evaluate the Green’s function on a quantum
computer.

APPENDIX B: SET OF RULES FOR HOPPING OPERATORS

The hopping operators differ based on the hopping direc-
tion. We distinguish between hopping in the x direction and in
the y direction.

1. Hopping in the x direction

Within the bosonization framework [26], the elementary
bilinear hopping operators along the x axis are represented in
terms of qubit Pauli operators in the following way:

i{lxl, I3l vlsl vivty
My () Mg yMpd) ) =(2)
= {_XM YrT ’ _XrT XrT ’ YrT YrT ’ YrT XrT } ®ZrT :
(B1)

With minimal changes similar mappings also work for spin
down hopping operators along the x axis. For instance, the
bilinear X}x} is mapped onto —X'r(ll)Yr(il)Zﬁ). The difference
to Eq. (B1) stems from the opposite way of ordering physical
versus auxiliary qubits (representing spin down fermions, as

shown in Fig. 4).

2. Hopping in the y direction

Elementary bilinear hopping operators along the y axis
involve physical and auxiliary fermions with opposite spins.
Again, bosonization rules provide the following correspon-
dence:

iz xl5E vlay vlse )
Oy yDpgd) yDypd) D)D) 2)%(©2)
= _{YrT le ’ YrT Xri ’ Xr? le ’ Xr? Xri }®YrT Xrl ’
(B2)
and similar mappings for the other choice of vertical links,
iz, 2k i s
vy () v(Hyd) wDyd) )y (1) 7 (2)y (2)
S LD AR A SLRD ) AR G0 Syl =D ) g
(B3)
APPENDIX C: DERIVATION OF THE KUBO FORMULA

In this Appendix we summarize the basics of linear re-
sponse theory and derive the generalized susceptibility (28).

Consider the Hamiltonian of a system, H'(t) = H + V (¢),
with a perturbation V() = > ;@A acting at times ¢ > 0
and given by the sum of hopping operators A; defined in
Eq. (26). Let also pp = p(t = 0) be an initial density ma-
trix. Presently, we have py = |W(o, Bs)) (W(a, Bs)|, with
(otx, Bs) being the optimal parameters of the VHA. However
the exact form of oy is not important for what follows.

By introducing the Heisenberg operators, A;(¢) =
e A;e ' we are aiming to find how their averages,

(A1) o = tr(poAi(r)), (C1)

change in time in response to the perturbation V(¢). Here a
subscript in the average, (--- )¢, indicates that the latter is a
functional of generalized forces ®;(¢). To this end, we switch
to the interaction picture by defining A;(t) = €'"A;e~"" such
that the average in Eq. (C1) becomes

(A1) o = trlpoU T (AU ()], (C2)

where
t
U(t) = eMe ™" = T, exp {—i f Vl(t’)dt’} (C3)
0

is an evolution operator in the interaction picture expressed via
Vit) = Zj ®;(t)A;(t). At this point we may expand U () up
to first order in perturbation V;(#) and obtain

(A1) o = (Ai(t)) + i/o dr' (i), Al +--- . (C4H)

where (---) denotes an average with the initial density ma-
trix pp. For our choice of operators A; the Oth-order term in
Eq. (C4) vanishes. On introducing the response function

Xij(t, 1) = —i®@ — ") ([A(), A;(t)]), (C5)

we finally find the Kubo formula. It states that in linear order
the response of a system to the perturbation ®;(z) is given by

8(Ay(1)) :/0 Xxijt —t)®;(t"dt'. (Co)

In particular, if the perturbation is localized in time at r = 0,
ie., ®;(t) = ®;5(t), then Eq. (C6) yields

SUA0) =D xij (DD, (C7)
J

In this form it can be used to construct the corresponding
quantum circuits as described in the main text.

APPENDIX D: NONLINEAR RESPONSE

In this Appendix we reconsider the measurement circuit on
Fig. 13 at arbitrary strength of perturbation characterized by
the angle 6 = CIJ;'-/ and derive Egs. (36) and (37).

To this end we introduce a wave function |\W,.) to denote the
initial state of a simulated Hubbard cluster at = 0. It may or
may not be equal to the VHA ground state |\W(c,, B,))—the
presented quantum algorithm for the Green’s function mea-
surement is independent of this. With the ancilla qubit taken
into account, an initial state of the quantum circuit on Fig. 13
then reads |¥) = |¥,) ® |1),. When the perturbation Eq. (27)
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FIG. 27. Analytical energy landscape for the two-site dimer for
finding its ground state via the variational Hamiltonian ansatz with
angles o and S shown fort = 1 and U = 4.

followed by the unitary evolution operator is applied to this
state, it evolves into

W) = (U, ® e~ ?E00) 397 v | §y . (D1)

Here the angle A = ¢,¢ and we have expressed the Hamilto-
nian of the d fermion via Majorana operators,
+ 1 i
Hd = €4 d'd— =) = —€4XaYd- (DZ)
2 2
With the state |\W;) at hand our aim is to evaluate the response
to the generalized force ij/ at time 7,
i
(A7) = §<‘Pz|xiaxazl‘11t), (D3)
beyond the linear regime discussed in the main text. Hence,

we introduce Majorana operators of a cluster in the Heisen-

berg representation,
Xig (1) 1= U/ xig Ur, (D4)

and use the anticommutation relation of the ancilla Majorana
xg with its Hamiltonian, namely {x;, H;} = 0. The latter, in

turn, yields a simple time evolution for x4,

x4(t) = e%)»(ixdyd)xde*%l(ixdyd) — xde)»(xfzyd)’ (D5)

where we reiterate that A = ¢,4¢. Definitions (D4) and (D5)
enable one to rewrite the expectation value (D3) in a more
transparent form,

(A7 (1)) = (Wole™ 7y (g (1) 7 o W) (D6)
Further progress is feasible by observing that any bilinears
of (unequal) Majoranas square to identity, e.g., (iyjo'Xg ) =

(iyaxy)* = 1. As such, one may simplify the exponentials in
(D6) as

Loy, ’ . ’
2% Yie¥a — cog %d)‘; + YjorXq Sin %qu ,

(D7)
and use the analogous transformation to rearrange Eq. (D5).
With the help of these relations the expectation value (D6)
can be decomposed into eight terms. For each of these terms
one performs an average in the ancilla’s Hilbert space using
the following relations:

a{llxgll)a = a(llyall)a =0,

a(llixgyall)a = 4(112d¥d — 1]1)4 = 1. (D3)
As the result only four nonzero terms remain, which after
straightforward algebra are simplified to

Lo
(A;r(t)) = 5 sin (Dj sin A (Wl {xis (2), yjo’}|\p*>
— % sin (I);/ cos A (Wy|[xio (), yjor 1| Ws).  (D9)

To arrive at this expression one makes use of anticommuting
properties of Majoranas, i.e., {x;;(t), x4} = {xix (¢), ya} = O.
As one can see from Eq. (D9), by choosing the angle A in
the quantum circuit on Fig. 13 to be 7 /2 or 0, the measure-
ment outcome reproduces, respectively, either the retarded or
Keldysh Green’s function. Thereby we confirm one of our
main results given by Egs. (36) and (37).

1 1 : .
——analytic i —analytic 2
\ {1024 shots L f 1024 shots v/é ?\
—~ x i 2048 shots - 2048 shots —~ i/‘i g
— 05 § 4096 shots — 05 4 4096 shots —> 05¢ L4
= AR i 8192 shots e i 8192 shots 1l 2 $1
~ : = ity @
S % 2 iy 5 /§
~~ 0 1 ~—~ 0 —~ 0
= = [§1 =
N ) 7 ™
D =N . 8 ——analytic
T~ -05 .05 L§" I ~ -05r| I 1024 shots
e e \éé S Vi e 2048 shots
Niile 4096 shots
U 8192 shots
1 -1 L - T L L
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
T T T

FIG. 28. Correlators y,-y,, ¥3-y3, and x3-y, evaluated in 25 Trotter steps of the duration At = 0.314. The solid blue curves correspond to
the analytical results, cf. Egs. (68)—(70). System parameters are chosen to be V = 1 and U = 4V . Errors bars indicating the standard deviation
of outcomes decrease with greater number of shots. The correlators were evaluated on Qiskit’s noisy Aer simulator of the FakeKolkataV2()
backend, an open-access simulator of the corresponding superconducting device ibmg_kolkata provided by IBM.
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FIG. 29. Layout of the ibmgq_kolkata quantum device, consisting
of 27 superconducting qubits and their couplings. The set of physical
qubits {18, 17,21, 23, 24} (green) was used for demonstrating our
algorithm.

APPENDIX E: ANALYTICAL ENERGY LANDSCAPE
OF THE TWO-SITE DIMER

Figure 27 is the analytical version of Fig. 21. The objective
is to find the angles that yield minimum energies. The analyti-
cal angles qualitatively match the angles from the simulation.

APPENDIX F: IMPLEMENTATION DETAILS

In this section we give details on the simulated quantum
processor used for showcasing our proposed algorithm. More-
over, we give details on the execution and error mitigation
schemes considering the number of shots (see Fig. 28) for
the presented quantum circuits. Throughout this work, we
have worked solely with Qiskit [45], an open-source software
kit provided by IBM. Qiskit allows users to design, refine
and execute quantum software on either simulated quantum
hardware, or on quantum hardware made available through
IBM.

1. Simulated quantum processor

The demonstrations take place on the FakeKolkataV2()
backend, resembling the characteristics of the ibmg_kolkata
quantum device, consisting of 27 superconducting qubits.
The layout of the chip as well as couplings between the
qubits are depicted in Fig. 29, where the five qubits required
for executing proposed algorithm are highlighted in green,
alongside their couplings. For the following analysis, we will
denote the simulated qubits, which have been used for our
demonstrations as qg), for which the exponent is the logical
qubit number, and p is the number of the physical qubit,
which arises from the mapping of logical to physical qubits.
Let £L={0, 1,2, 3,4} be the set of logical qubits and P =
{18, 17, 21, 23, 24} be the set of physical qubits. Then, a map-
ping from logical to physical qubits is performed via f : L; >
‘P:, where i points to the ith element of the corresponding
set. At the time of performing the simulations, the device
has the following set of basis gates: ID, X, SX, RZ, and CX.
In Table I one finds qubit calibration data at the time of
the simulation. Furthermore, Table II shows single-qubit gate
errors and measurement errors. Note, that RZ is a virtual Z ro-
tation and thereby has neither an error, nor a duration. Finally,
Table I11 gives the CX errors for qubit pairs (¢4, g *").

TABLE I. Calibration data of qubits ¢ at the time of the
simulation.

Frequency (GHz) T, (1073 s) T (1073 s)
q%y 5.09 10.93 6.99
q\y 5.24 9.08 3.53
s 5.27 10.13 10.98
a5y 5.14 8.45 10.78
a5 5.0 11.41 2.61

2. Quantum simulation details

For performing noisy simulations, we employ Qiskit’s Aer,
a high performance simulator for executing quantum circuits
within Qiskit. Next, we chose the FakeKolkataV2() backend,
which is supposed to mimick the behavior of the quantum
device ibmq_kolkata, as described in F 1. These two ingredi-
ents allow for noisy simulations based on the ibmgq_kolkata
device with given gate fidelities, operations and durations.
This is particularly useful to gauge the accuracy of results if
demonstrations took place on the real quantum device.

a. Notation for quantum gates

We summarize the notation for quantum gates as they ap-
pear in our algorithms in Table IV.

b. Error mitigation techniques

We made use of several error mitigation techniques [46],
implemented natively in Qiskit. In the following, we briefly
outline the techniques, which have been proven useful in our
calculations.

(1) Readout error mitigation aims to reduce errors in mea-
surements of bit strings. In its standard form, one prepares
the computational states of a given system size and measures
the frequency of associated bit strings. Discrepancies in the
statistics can then be inversed by simple algebra in successive
quantum computations.

(i1) Pauli twirling is used to transform coherent errors
into incoherent errors in form of a Pauli channel. Due to
the relative simplicity of a Pauli channel, these errors can
be mitigated more effectively. Technically, two-qubits gates
CX and CZ gates are sandwiched between two pairs of single
qubit gates, chosen randomly from a set of Pauli gates, which
satisfy the equivalence of a two-qubit gate and its sandwiched

TABLE II. Example table with merged cells in the first column.

Single-qubit operation error (and duration)

{ID, X, X}

Measurement

gy 1.98x 107 (3.56 x 1078 s)
¢V 422%107* (3.56 x 1078 5)
P 259 %107 (3.56 x 1078 5)
¢ 1.73x 107 (3.56 x 1078 5)
45 1.65x107* (3.56 x 1078 5)

74 x 1073 (6.76 x 107 s)
6.1 x 1073 (6.76 x 1077 s)
6.8 x 1073 (6.76 x 1077 s)
7.9 x 1073 (6.76 x 1077 5)
53 x 1073 (6.76 x 1077 5)
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TABLEIIL CX gate errors on qubit pairs (¢!, g!/*"), at the time
of the simulation.

TABLE IV. This table summarizes our conventions for elemen-
tary quantum gates used throughout the paper.

Qubit pair CX error (and duration)

(@ a1) 1.62 x 1072 (5.05 x 1077 s)
(415, a%)) 8.77 x 107 (4.91 x 1077 s)
(65, 4%)) 539 x 107 (3.63 x 1077 s)
(45, a5 534 x 107 (2.84 x 1077 5)

counterpart. This procedure is repeated for a number of cir-
cuits, each governed by equivalent physics, however different
in their gate symphony. Last, the results for the list of circuits
are averaged out.

(iii) Dynamical decoupling is applied on idle qubits during
the computation to protect against decoherence. Usually, one
applies a sequence of repetitive Pauli gates, e.g., XX or ZZ,
on idle qubits, which are timed such that possible phase flip
and bit flip errors are reduced.

(iv) Zero-noise extrapolation. Quantum computers in the
NISQ era are known for being error prone. Zero-noise extrap-
olation [47] respects the noisy nature of such computers by
artificially increasing the noise tractably and systematically.
One then extrapolates the results of increasingly noisy com-
putations back to the zero-noise limit.

3. Employment of error mitigation techniques

The methods used for generating the results shown in
Fig. 21 are readout error mitigation and dynamical decoupling
with XX sequences on idle qubits. On the other hand, the
evaluation of correlators, Fig. 25, requires a more extensive

Gate Symbol Matrix

Hadamard ]

— (000
- (' o)

Y -basis change —

H
X
z

Z rotation - 79 —
Xz
2
T9

Phase ]

Controlled-Not

[=ReNens
SO = O
- o O O

Controlled-Z

ecleoNeNel S =]

51

o= OO

use of error mitigation techniques. In addition to readout er-
ror mitigation and dynamical decoupling, Pauli twirling with
100 repetitions was applied. On top of that, we have em-
ployed zero-noise extrapolation at the noise scaling factors of
[1.0, 1.5, 2.0, 2.5, 3.0] with a polynomial extrapolator of sec-
ond order. Finally, the number of shots for all demonstrations
was set to 4096, as Fig. 28 suggests this number balances out
computational effort and accuracy of a result.
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