001046964 001__ 1046964
001046964 005__ 20251007202036.0
001046964 0247_ $$2doi$$a10.1103/wbp6-y3vd
001046964 0247_ $$2ISSN$$a2469-9926
001046964 0247_ $$2ISSN$$a2469-9942
001046964 0247_ $$2ISSN$$a2469-9934
001046964 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04032
001046964 037__ $$aFZJ-2025-04032
001046964 041__ $$aEnglish
001046964 082__ $$a530
001046964 1001_ $$0P:(DE-Juel1)201370$$aShapiro, Dmitrii$$b0$$eCorresponding author$$ufzj
001046964 245__ $$aDigital-analog simulations of Schrödinger cat states in the Dicke-Ising model
001046964 260__ $$aWoodbury, NY$$bInst.$$c2025
001046964 3367_ $$2DRIVER$$aarticle
001046964 3367_ $$2DataCite$$aOutput Types/Journal article
001046964 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759843830_11337
001046964 3367_ $$2BibTeX$$aARTICLE
001046964 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046964 3367_ $$00$$2EndNote$$aJournal Article
001046964 520__ $$aThe Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental validation is hindered by a “no-go theorem.” Here, we propose a digital-analog quantum simulator for this model based on an ensemble of interacting qubits coupled to a single-mode photonic resonator. We analyze the system's free-energy landscape using field-theoretical methods and develop a digital-analog quantum algorithm that disentangles qubit and photon degrees of freedom through a parity-measurement protocol. This disentangling enables the emulation of a photonic Schrödinger cat state, which is a hallmark of the superradiant ground state in finite-size systems and can be unambiguously probed through the Wigner tomography of the resonator's field.
001046964 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001046964 536__ $$0G:(EU-Grant)101120240$$aML4Q - Machine Learning for Quantum (101120240)$$c101120240$$fHORIZON-MSCA-2022-DN-01$$x1
001046964 536__ $$0G:(BMBF)13N15688$$aVerbundprojekt: Digital-Analoge Quantencomputer (DAQC) - Teilvorhaben: DAQC Kontrolle, Kalibrierung und Charakterisierung (13N15688)$$c13N15688$$x2
001046964 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)$$cBMBF-13N16149$$x3
001046964 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046964 7001_ $$0P:(DE-Juel1)190818$$aWeber, Yannik$$b1$$ufzj
001046964 7001_ $$0P:(DE-Juel1)195623$$aBode, Tim$$b2$$ufzj
001046964 7001_ $$0P:(DE-Juel1)184630$$aWilhelm, Frank K.$$b3
001046964 7001_ $$0P:(DE-Juel1)194613$$aBagrets, Dmitry$$b4
001046964 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/wbp6-y3vd$$gVol. 112, no. 4, p. 042412$$n4$$p042412$$tPhysical review / A$$v112$$x2469-9926$$y2025
001046964 8564_ $$uhttps://juser.fz-juelich.de/record/1046964/files/wbp6-y3vd.pdf$$yOpenAccess
001046964 909CO $$ooai:juser.fz-juelich.de:1046964$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001046964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201370$$aForschungszentrum Jülich$$b0$$kFZJ
001046964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190818$$aForschungszentrum Jülich$$b1$$kFZJ
001046964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195623$$aForschungszentrum Jülich$$b2$$kFZJ
001046964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b3$$kFZJ
001046964 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194613$$aForschungszentrum Jülich$$b4$$kFZJ
001046964 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001046964 9141_ $$y2025
001046964 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001046964 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001046964 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2025-01-02
001046964 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046964 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001046964 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001046964 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001046964 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046964 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001046964 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001046964 920__ $$lyes
001046964 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001046964 980__ $$ajournal
001046964 980__ $$aVDB
001046964 980__ $$aUNRESTRICTED
001046964 980__ $$aI:(DE-Juel1)PGI-12-20200716
001046964 9801_ $$aFullTexts