Home > Publications database > Digital-analog simulations of Schrödinger cat states in the Dicke-Ising model > print |
001 | 1046964 | ||
005 | 20251007202036.0 | ||
024 | 7 | _ | |a 10.1103/wbp6-y3vd |2 doi |
024 | 7 | _ | |a 2469-9926 |2 ISSN |
024 | 7 | _ | |a 2469-9942 |2 ISSN |
024 | 7 | _ | |a 2469-9934 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-04032 |2 datacite_doi |
037 | _ | _ | |a FZJ-2025-04032 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Shapiro, Dmitrii |0 P:(DE-Juel1)201370 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Digital-analog simulations of Schrödinger cat states in the Dicke-Ising model |
260 | _ | _ | |a Woodbury, NY |c 2025 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1759843830_11337 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental validation is hindered by a “no-go theorem.” Here, we propose a digital-analog quantum simulator for this model based on an ensemble of interacting qubits coupled to a single-mode photonic resonator. We analyze the system's free-energy landscape using field-theoretical methods and develop a digital-analog quantum algorithm that disentangles qubit and photon degrees of freedom through a parity-measurement protocol. This disentangling enables the emulation of a photonic Schrödinger cat state, which is a hallmark of the superradiant ground state in finite-size systems and can be unambiguously probed through the Wigner tomography of the resonator's field. |
536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
536 | _ | _ | |a ML4Q - Machine Learning for Quantum (101120240) |0 G:(EU-Grant)101120240 |c 101120240 |f HORIZON-MSCA-2022-DN-01 |x 1 |
536 | _ | _ | |a Verbundprojekt: Digital-Analoge Quantencomputer (DAQC) - Teilvorhaben: DAQC Kontrolle, Kalibrierung und Charakterisierung (13N15688) |0 G:(BMBF)13N15688 |c 13N15688 |x 2 |
536 | _ | _ | |a BMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149) |0 G:(DE-Juel1)BMBF-13N16149 |c BMBF-13N16149 |x 3 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Weber, Yannik |0 P:(DE-Juel1)190818 |b 1 |u fzj |
700 | 1 | _ | |a Bode, Tim |0 P:(DE-Juel1)195623 |b 2 |u fzj |
700 | 1 | _ | |a Wilhelm, Frank K. |0 P:(DE-Juel1)184630 |b 3 |
700 | 1 | _ | |a Bagrets, Dmitry |0 P:(DE-Juel1)194613 |b 4 |
773 | _ | _ | |a 10.1103/wbp6-y3vd |g Vol. 112, no. 4, p. 042412 |0 PERI:(DE-600)2844156-4 |n 4 |p 042412 |t Physical review / A |v 112 |y 2025 |x 2469-9926 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1046964/files/wbp6-y3vd.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1046964 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)201370 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)190818 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)195623 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)184630 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)194613 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1230 |2 StatID |b Current Contents - Electronics and Telecommunications Collection |d 2025-01-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-12-20200716 |k PGI-12 |l Quantum Computing Analytics |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-12-20200716 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|