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Digital-analog simulations of Schrödinger cat states in the Dicke-Ising model
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The Dicke-Ising model, one of the few paradigmatic models of matter-light interaction, exhibits a superradiant
quantum phase transition above a critical coupling strength. However, in natural optical systems, its experimental
validation is hindered by a “no-go theorem.” Here, we propose a digital-analog quantum simulator for this model
based on an ensemble of interacting qubits coupled to a single-mode photonic resonator. We analyze the system’s
free-energy landscape using field-theoretical methods and develop a digital-analog quantum algorithm that
disentangles qubit and photon degrees of freedom through a parity-measurement protocol. This disentangling
enables the emulation of a photonic Schrödinger cat state, which is a hallmark of the superradiant ground state
in finite-size systems and can be unambiguously probed through the Wigner tomography of the resonator’s field.
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I. INTRODUCTION

The Dicke-Ising model has garnered significant attention in
recent years due to the richness of its quantum phases [1–8].
A central feature of this model is the competition between
spin-spin interactions, which tend to drive an Ising transition,
and the collective Dicke coupling, which leads to superradiant
photon condensation. This interplay results in a more complex
superradiant quantum phase transition (QPT) compared to
that in the conventional Dicke model [9–15].

In natural optical systems, the superradiant QPT is gener-
ally considered forbidden by a no-go theorem, which asserts
that the diamagnetic term, proportional to the square of the
vector potential Â2, prevents photon condensation. However,
this constraint can be circumvented [16–18] in quantum sim-
ulators such as cold-atom lattices [19–26] or circuit QED
setups [27–29] (see also review articles [30–33]), where the
theorem is overcome on the physical level.

Another possibility to simulate the class of Dicke-type
models could potentially be offered by quantum hardware,
which relies on the Trotterized approximation of the evo-
lution operator via quantum circuits. This approach, known
as digital quantum simulation [34–39], has recently become
a popular line of research and is considered one of the
few promising future applications of quantum computers.
Its validity has been successfully verified in numerous ex-
periments (see recent reviews such as Ref. [40]). However,
simulating many-body correlated systems with spin-boson or
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fermion-boson interactions presents a distinct challenge: en-
coding bosonic fields using qubits. Specifically, encoding a
single bosonic mode with a finite occupation-number cut-
off Nmax requires log2 Nmax qubits [41,42]. To address this
problem, one may work within the alternative quantum
digital-analog framework [43,44]. The latter employs bosonic
degrees of freedom as a computational resource and enables
boson-qubit entanglement at the hardware level. Within this
scheme, the dynamics of the quantum Rabi model in the
strongly coupled limit was simulated using a single trans-
mon qubit coupled to a resonator [44]. More recently, this
concept has been suggested for simulating the lattice gauge
theories [45] and Hubbard-Holstein model [46]. Our study
leverages this methodology to simulate the dynamics gov-
erned by the more elaborate Dicke-Ising Hamiltonian, with
a focus on novel qubit-boson architectures that are experi-
mentally feasible within the context of circuit QED [44,47].
Superconducting platforms are particularly well suited for this
purpose due to the long coherence times of their resonators
(on the order up to milliseconds [48,49]), which signifi-
cantly exceed the timescales of analog evolution (hundred
of nanoseconds [44]). In contrast, implementing alternative
systems such as trapped ions coupled to vibrational modes
is more challenging in this regard. The decay time (on the
order of tens of milliseconds) are only about two orders of
magnitude greater than the relevant Rabi periods [50,51].

A particularly compelling aspect of our digital-analog
approach is twofold: (i) the potential to simulate the tran-
sition into the superradiant phase via a quench protocol,
and (ii) the ability to disentangle the photon condensate
and the qubit degrees of freedom in the many-body density
matrix. This gives the proposed simulation strategy a strik-
ing advantage over fully analog simulators [23], where only
macroscopic parameters of the condensate have been available
for direct measurement. Remarkably, this disentanglement of
condensed photons can enable the emulation of Schrödinger
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cat states, which are a hallmark of the superradiant ground
state in finite-size systems.

The paper is organized as follows. In Sec. II, we present
the model and the main idea of creating a cat-state density
matrix with the help of qubit-parity measurements. In Sec. III,
we provide a field-theory description of the superradiant QPT
for different limits of the model. We introduce the method of
deriving the free energy using path integrals in Sec. III A. The
mean-field results for the conventional Dicke model and the
Dicke-Ising model with spin 1

2 are discussed in Secs. III B
and III C, respectively. The role of quantum fluctuations near
the instanton trajectory and the relation to the Kibble-Zurek
mechanism are addressed in Sec. III D. The generalization
of the Dicke-Ising model to spins larger than 1

2 , via angular
bosonization, is provided in Sec. III E. A quasiclassical ap-
proach for angular fluctuations is presented in Sec. III F. In
Sec. IV, we present the quantum simulation algorithm. We
discuss the idea of the superradiant ground-state approxima-
tion via the quench in Sec. IV A. In Sec. IV B, we present
digital-analog quantum circuits for Jaynes-Cummings, Rabi,
and Dicke gates; in Sec. IV C we give an overview of the
algorithm. In Sec. V, we discuss our results and present data
for the exact and Trotterized dynamics; in the ending Sec.VI
we conclude.

II. MAIN IDEA

The Dicke-Ising model (h̄ = kB = 1 hereafter),

ĤDI = ĤD − J
N−1∑
j=1

σ̂ z
j σ̂

z
j+1, (1)

is a combination of the standard Ising model and the Dicke
Hamiltonian

ĤD = ω0â†â − ωz

N∑
j=1

σ̂ z
j + g√

N
(â† + â)

N∑
j=1

σ̂ x
j , (2)

which describes an ensemble of N spin-s degrees of free-
dom coupled to a common photon mode. In the Ising part
of Eq. (1), a positive coupling J > 0 corresponds to a fer-
romagnetic spin-spin interaction. Through the Dicke part of
Eq. (1), the spins obtain excitation frequencies ωz > 0, while
the photon mode has frequency ω0 and is described by the
bosonic annihilation and creation operators, â and â†, com-
muting as [â, â†] = 1 and acting in the space of photonic
Fock states |n〉 as â|n〉 = √

n|n−1〉 and â†|n〉 = √
n+1|n+1〉

with n being a photon number; the qubit-resonator coupling
strength is denoted by g. For qubits, which correspond to spin
s = 1

2 , we associate the logical |0〉 j of qubit j = 1, . . . , N to
the eigenstate (1, 0)T of σ̂ z

j with the eigenvalue 1.
At zero temperature, g plays the role of a control parameter

of the superradiant QPT. If g is less than the critical value gc,
the system is in its normal phase, with a ferromagnetic ground
state

|FM〉 = |0〉 ⊗
N∏

j=1

|0 j〉. (3)

In the superradiant phase, where g > gc, there exist two
quasidegenerate superradiant many-body states |�R〉 and

|�L〉, and the highly entangled ground state becomes the
superposition

|SR〉 = 1√
2

(|�L〉 + |�R〉). (4)

In a large spin ensemble, these wave functions are given by the
direct products |�R〉 = |−α〉⊗|R〉 and |�L〉 = |α〉⊗|L〉. Here,
|±α〉 = e− 1

2 |α|2 ∑
n�0

(±α)n√
n!

|n〉 are photon coherent states with
opposite phases. The number of photons stored in these states,
|α|2, can be macroscopically large. In the mean-field picture,
the value of α is given by a free-energy minimum. The qubit
states |R(L)〉 = ∏N

j=1(|0〉 j ± |1〉 j )/
√

2 are antiparallel to each
other (on their respective single-particle Bloch spheres).

Let us remember that in circuit QED, Schrödinger’s cat
state is the nonclassical state

|cat〉 = 1√
2

(|α〉 + | − α〉), (5)

which is a promising candidate for qubit encoding due to its
nonlocality in phase space [53–56], rendering it stable against
local perturbations provided the photon number is large.

The central idea of our work is to disentangle |±α〉
and |R(L)〉 from the joint many-body density matrix,
ρ̂SR = |SR〉〈SR|, thus emulating the cat-state density matrix
in the photon basis, i.e.,

ρ̂cat = 1
2 (|−α〉〈−α| + |α〉〈α| + |α〉〈−α| + |−α〉〈α|). (6)

Note that simply taking the trace over the qubit degrees of
freedom in ρ̂SR results in a mixed-state density matrix

ρ̂mix = trσ [ρ̂SR] = 1
2 (|−α〉〈−α| + |α〉〈α|), (7)

which lacks the coherent cross terms |±α〉〈∓α| that appear in
Eq. (6). To obtain these cross terms, we select one half of the
qubit states corresponding to a given value of the total qubit
parity. This selective parity measurement can be defined as

ρ̂+ = trσ [ρ̂SRP̂+], (8)

where the positive parity operator is

P̂+ = 1

2

⎛⎝1̂ +
N∏

j=1

σ̂ z
j

⎞⎠, (9)

with P̂+|R〉 = P̂+|L〉 = (|R〉 + |L〉)/
√

2. The trace with the P̂+
in Eq. (8) provides the desired result, i.e., ρ̂+ = ρ̂cat. Per-
forming a series of projective measurements following Eq. (8)
enables us to observe nonclassical cat-state signatures in a
subsequent Wigner tomography [53,54] of the photon mode.

Consider the Wigner function W (x, p) corresponding to a
reduced density matrix ρ̂ = trσ [Ôρ̂SR],

W (x, p) =
∞∑

n,m=0

〈n|ρ̂|m〉Vn,m(x, p), (10)

where

Vn,m(x, p) =
∫

dy
Hn(x−y)Hm(x+y)e2ipy−(x2+y2 )

√
π32n+mn!m!

(11)

are the harmonic oscillator eigenfunctions overlap integrals,
and Hn(x) = (−1)nex2

dne−x2
/dxn are Hermite polynomials.
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FIG. 1. Reduced density matrices (a) for the mixed state
ρ̂mix = trσ [ρ̂SR] and (b) when projected to the positive-parity sub-
space ρ̂+ = trσ [ρ̂SRP̂+]. (c) Wigner function of the mixed state, and
(d) of the projected state showing nonclassical features indicative of
a cat state. The photon Hilbert space has a cutoff of 20 photons. The
coupling g = 0.9

√
ω0J is near the critical value g̃c, the chain has

open ends and comprises N = 7 qubits. The other parameters are
J = ω0 and ωz = 0.05ω0.

Following to the definitions (7) and (8), we have Ô = 1̂ for
the mixed state and Ô = P̂+ for the cat state.

The momentum-integrated Wigner function yields the
photon probability distribution w(x) = ∫

d pW (x, p), which
reduces to

w(x, t ) = e−x2
∑

n,m�0

Hn(x)Hm(x)√
π2n+mn!m!

〈n|ρ̂(t )|m〉. (12)

In Figs. 1(a) and 1(b) we present, respectively, illustrations
of the matrix elements of ρ̂mix and ρ̂+ for a finite system
in the superradiant phase. The many-body density matrix
ρ̂SR is found numerically via exact diagonalization of the
Dicke-Ising Hamiltonian. One can observe that 〈n|ρ̂|m〉 �= 0
if both of Fock state numbers n, m are odd. In the thermo-
dynamic limit, Wmix(x, p) would have two singular points at
x = ±√

2α; in a finite system near the critical point,
Wmix(x, p) has two linked blobs as shown in Fig. 1(c).

The projected Wigner function W+(x, p) calculated from
ρ̂+ is shown in Fig. 1(d). The signatures of Schrödinger’s
cat state are visible as fringes of negative quasiprobability
W+(x, p)<0, which is a benchmark for the presence of cat
states in the output of our algorithm given below.

We note that the Wigner function for negative parity
W− = Wmix − W+, where the corresponding projector is P̂− =
1̂ − P̂+, also exhibits cat-state signatures, albeit less promi-
nently. The choice of positive parity in our protocol follows
from the fact that in the g = 0 limit, the system has positive
parity (i.e., 〈P̂+〉 = 1 and 〈P̂−〉 = 0), which is a feature of the
normal ferromagnetic state supported by J > 0 and ωz > 0.
Near the critical coupling gc, or under quench dynamics, the

system becomes partially superradiant paramagnetic, and the
expectation value satisfies 1

2 < 〈P̂+〉 < 1. Deep in the super-
radiant phase, 〈P̂+〉 and 〈P̂−〉 approach 1

2 , indicating that the
probabilities to observe positive and negative parity become
balanced.

The remainder of the paper has two main threads: (i) Ap-
plying methods of statistical physics to derive a profile of
the free energy. This sheds light on the order of the QPT as
well as on the quantum fluctuations around the mean-field
solutions and the associated macroscopic quantum tunneling
between the superradiant states |�L〉 and |�R〉. (ii) Based on
this understanding of the free-energy profile, we then perform
quantum-circuit simulations of the real-time dynamics of the
photon distribution in the corresponding effective potential,
culminating in the sought-for cat states.

III. SUPERRADIANT QUANTUM PHASE TRANSITIONS

In this section, we start with a recapitulation of the well-
known result about the second-order QPT in the conventional
Dicke model. After that, we turn to the Dicke-Ising Hamilto-
nian (1) with J �= 0 and ωz = 0; the limit ωz → 0 enables
an exact calculation of the trace over the spins. It can be
performed for qubits (s = 1

2 ) via the usual Jordan-Wigner
transformation, resulting in a mean-field solution for the free
energy that predicts a first-order QPT. Aside from that, the
free energy determines an instanton trajectory in Matsubara
imaginary time and, therefore, the rate of macroscopic quan-
tum tunneling.

For ωz 
 J , in the superradiant phase, the order-parameter
fluctuations are critical because the magnon excitations be-
come gapless [Eq. (22)]. If the fluctuations are unstable, the
Gaussian approximation is not sufficient. If s is large (qu-
dit case), and the photon mode has a low frequency, then
fluctuations are suppressed; the mean-field solution becomes
asymptotically exact in this case. At finite ωz ∼ J , integrating
out the magnons exactly via the Jordan-Wigner transforma-
tion is more challenging. As an alternative approach, we
therefore suggest the angular representation of spins, which
is valid for arbitrary s.

A. Methods

To calculate the free energy F as a function of the super-
radiant order parameter, we recall the relation between F and
the partition function Z = tre−Ĥ/T at finite temperature T ,

Z = e−F/T , (13)

where the trace is taken over all degrees of freedom. Field-
theory methods enable one to represent the trace as a path
integral over complex bosonic fields a and ā, while the fields
�σ parametrize the spin sector, i.e., the partition function may
be written as

Z =
∫

d[a, ā, �σ ]e−S[a,ā,�σ ]. (14)

Upon transformation from a Hamiltonian to the path integral,
the real part of the photon operators becomes a trajectory u(τ )
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on the Matsubara time interval τ ∈ [0, 1/T ]:

1√
N

(â + â†) → u(τ ). (15)

The trajectories u(τ ) are slow if N is large (thermodynamic
limit) and the photon frequency ω0 is small. This corresponds
to the mean-field limit, where u can be associated with the
superradiant order parameter. The photon position operator
x̂ = 1√

2
(â + â†) is related to u by x̂ → √

N/2u.
The idea now is to calculate the path integral over

all fast fields and represent the partition function as a
single path integral over the slow quantum field u, i.e.,
Z = ∫

D[u] exp (−Seff [u]); the new functional in the exponen-
tial is the effective action for u. The free energy follows from
Seff if we neglect the slow time dependence of u(τ ) to obtain

F (u) = T Seff [u = const]. (16)

The low-temperature action Seff is proportional to 1/T ; hence,
T drops from all the formulas for the free energy.

Note that the momentum operator p̂ = i√
2
(â − â†) does

not appear in the interacting part of the Hamiltonian (1).
Therefore, in the path integral, the real field v correspond-
ing to i p̂ appears only in the free-photon Matsubara action,
namely,

S0 =
∫ 1/T

0
dτ ā(∂τ + ω0)a, (17)

where a(τ ) and ā(τ ) are complex bosonic fields. If we
make a rotation to the real fields u = (a + ā)/

√
N and v =

i(a − ā)/
√

N , and integrate out the field v, we arrive at the
free action for the order parameter,

S0[u] = N
∫ 1/T

0
dτ L[u(τ )], (18)

with the Lagrangian

L = (∂τ u)2

4ω0
+ ω0

4
u2. (19)

This is the sum of the kinetic term ∼(∂τ u)2 and the po-
tential energy F0 = ω0u2/4, which determines the parabolic
free-energy profile. In the next section, we show how the
interaction with the spins contributes additional terms to F .

B. Free energy in the Dicke model

Consider the conventional Dicke Hamiltonian (2). In what
follows, we work with the normalized free energy F = F/N ,
which, in the thermodynamic limit, reads as

FD(u) = ω0

4
u2 − ωz

(√
1 + g2

ω2
z

u2 − 1

)
. (20)

This result has been derived by integrating out the qubit states,
which can be done via different spin representations such
as Holstein-Primakoff bosonization [10] or bilinear combina-
tions of fermion fields [9,11,15]. The Dicke free energy FD(u)
exhibits a second-order QPT, as shown in Figs. 2(a)–2(c).
In the normal phase g < gc = √

ω0ωz/2 below the critical
coupling, there is only one minimum at u = 0. At g = gc, the
QPT occurs. Finally, there is a superradiant phase at g > gc,

FIG. 2. Sketch of the free energies as functions of the superradi-
ant order parameter for (a)–(c) the Dicke and (d)–(f) the Dicke-Ising
models. (a), (d) Normal phases. Critical points (b) of the second-
order and (e) first-order QPTs. (d), (f) Superradiant phases. The
values u = ±J/g in (f) correspond to the critical Ising chain.

which means that FD(u) acquires two minima at u = ±u0,
u0 > 0, and the system spontaneously relaxes to one of them.

C. Free energy in the Dicke-Ising model at ωz = 0 and s = 1
2

Coming back to the Dicke-Ising Hamiltonian with J > 0,
we consider the limit of ωz → 0. In Appendix A, we apply the
Jordan-Wigner transformation for spin operators and perform
the subsequent integral over the fermion fields. As a result, we
obtain the mean-field free energy

FDI(u) = ω0

4
u2 − 2

π
(g|u| + J )E

(
4g|u|J

(g|u| + J )2

)
, (21)

where the elliptic function E(x) results from an integral over
the quasimomentum in the Brillouin zone k ∈ (−π, π ). One
obtains two bands of Ising-chain magnons in the Brillouin
zone, and their spectrum is

ε(k) = ±2
√

g2u2(τ ) + J2 − 2Jgu cos k. (22)

In contrast to FD, the function FDI has three minima in a
certain range of g around the critical g̃c = c0

√
ω0J , c0 ≈ 0.9.

The first-order QPT occurs when the two side minima become
lower than the central minimum at u = 0 [see Figs. 2(d)–2(f)].
Note that our approach is complementary to previous studies
of phase transitions in this model [1–8].

D. Instanton approach: Relation to Ising transition
and Kibble-Zurek mechanism

The free energy FDI given by (21) is part of a mean-field
Matsubara action where u(τ ) is a trajectory in imaginary time,

Smf = N
∫ 1/T

0
dτ

(
(∂τ u)2

4ω0
+ FDI(u)

)
. (23)

Variation of this action yields an instanton equation that de-
scribes macroscopic quantum tunneling between the minima
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FIG. 3. (a) Angular representation of qubit states. The xz plane
contributing most to the mean-field solution is shown in blue. (b) The
effective potential in the mean-field approximation. The red dots
are the two minima representing the superradiant states |�R,L〉. The
dashed curve is an instanton trajectory. (c) Schematic representation
of the instanton trajectory uinst (τ ).

of the free energy at u = ±u0 (see Appendix B). The solution
of the instanton trajectory uinst (τ ) can be defined implicitly
via

τ =
∫ uinst (τ )

−u0

du√
2ω0[FDI(u) − FDI(−u0)]

. (24)

We find that in the superradiant phase, the instanton trajectory
always crosses two special points u = ±J/g [see Fig. 2(f)].
According to Eq. (22) for the magnon spectrum, the Ising
chain becomes critical due to the gap closing at these points.
This crossing occurs because uinst has support in the interval
[−u0; u0], which includes these special points since |J/g| <

u0, as implied by Eq. (21). We conclude that the fluctuations
above the QPT are nonvanishing; in other words, the system
remains critical in the superradiant phase. This behavior con-
trasts with the conventional Dicke model, which is critical
only at the transition point. We can also draw an imaginary-
time analogy of the Kibble-Zurek mechanism around the
second-order Ising QPT. In our case, the Ising transition is
virtual and hidden in the superradiant phase.

E. Angular representation at ωz �= 0 and s � 1
2

As mentioned above, the presence of special points on the
instanton trajectory indicates critical fluctuations at ωz = 0
in this model, attributed to the gapless spectrum. However,
the gap reemerges at finite ωz. The analytic derivation of FDI

for this general case of ωz �= 0 is more involved: Neither the
Jordan-Wigner nor the Majorana representation of the Pauli
operators yields a quadratic action over fermions. Therefore,
the exact Gaussian integration over spin states used in the
derivations of Eqs. (20) and (21) does not apply.

An alternative representation of spins with arbitrary s is
provided by [sketch shown in Fig. 3(a)]

σ̂ x
j → 2s sin ϑ j sin φ j,

σ̂
y
j → 2s cos ϑ j,

σ̂ z
j → 2s sin ϑ j cos φ j . (25)

As the number of excited states is 2s, qubits correspond to
s = 1

2 , qutrits to s = 1, and so on. In the path integral for the

partition function, ϑ j and φ j are real bosonic fields,

Z =
∫

d[{φ, ϑ}N
j , u] exp(−S[{φ, ϑ}N

j , u]), (26)

and the full Matsubara action reads as

S = SWZNW +
∫ 1/T

0
dτ (ā∂τ a + HDI). (27)

This is the sum of the Wess-Zumino-Novikov-Witten action

SWZNW = −is
∑

j

∫ 1/T

0
dτ φ̇ j (1 − cos ϑ j ), (28)

i.e., the integral over the spin Berry phase, the kinetic term for
the photon field ∼ā∂τ a, and finally the Dicke-Ising Hamilto-
nian parametrized by Eq. (25).

In the limit of small photon frequency ω0
J, g and finite
ωz, a mean-field solution can be found as this regime of energy
scales allows one to consider u(τ ) as a slow variable. The
trajectories contributing to Z then effectively reside near the
xz plane, with small, rapid out-of-plane fluctuations, i.e.,

ϑ j (τ ) = π

2
+ 
ϑ j (τ ). (29)

The corresponding geometric interpretation is shown in
Fig. 3(a). The logic of separation into slow and fast compo-
nents is also applicable to the in-plane components

φ j (τ ) = φ(τ ) + 
φ j (τ ), (30)

with a slow collective angle φ(τ ) and rapid fluctuations

φ j (τ ).

F. Quasiclassical approach for fluctuations

Further progress can be achieved in the quasiclassical limit
where one assumes that the fluctuations near the mean-field
trajectory are small. We start from the mean-field solution for
free energy, neglecting all angle fluctuations, i.e., 
ϑ j (τ ) =

φ j (τ ) = 0. We also assume that ω0 is smaller than other
energy scales, which guarantees that u(τ ) and φ(τ ) are slow.
The resulting mean-field action reads as

Smf = N
∫ ∞

0
dτ

(
(∂τ u)2

4ω0
+ Fmf (u, φ)

)
, (31)

where the mean-field free energy is

Fmf (u, φ) = 1
4ω0u2 + h(u, φ). (32)

Here, h(u, φ) corresponds to the spin part of the Hamiltonian
with homogeneous configurations of φ j = φ and ϑ j = π/2,

h(u, φ) = 2s(−ωz cos φ + gu sin φ − 2sJ cos2 φ). (33)

The profile of (33) in the superradiant phase is shown in
Fig. 3(b), where the two minima correspond to the distinct
macroscopic superradiant states |�R〉 and |�L〉. As long as
there is no time-derivative term for φ in Smf , nontrivial contri-
butions to Z are given only by the single quantum trajectory
φ̃(uinst ) that connects these two minima, i.e.,

Z ∼ e−Smf [uinst (τ )]. (34)

The value of Z then determines the amplitude of macroscopic
quantum tunneling.
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The angular dependence φ̃(u) is determined by the condi-
tion ∂φFmf (u, φ) = 0. The motion of u(τ ) along the quantum
trajectory is described by a modified instanton equation

ü

2ω0
+ ∂uFmf (u, φ̃(u)) = 0 (35)

with boundary conditions u(0) = −u(1/T ) = −u0. Again, a
sketch of the instanton solution is shown in Fig. 3(c).

The next step of our quasiclassical approach is to calculate
the quantum corrections Ffl to the mean-field potential Fmf

caused by the Gaussian fluctuations of 
ϑ j (τ ) and 
φ j (τ )
neglected previously. To this end, we expand S given by (27)
to second order in 
ϑ j (τ ) and 
φ j (τ ):

S = Smf [u, φ] + SG[u, φ,
ϑ,
φ]. (36)

This is a sum of the mean-field action (33) and the Gaussian
part SG given by

SG = 1

2

∫ 1/T

0
dτ

∫ π

−π

dk
2π

[
ϑ 
φ]−k

×
[
A(u, φ) −is∂τ

is∂τ Bk(u, φ)

][

ϑ


φ

]
k
, (37)

where the matrix elements depend on the slow trajectories.
Note that the action does not have a linear contribution be-
cause we assume that

∑
j 
ϑ j = ∑

j 
φ j = 0. For the term
∼
ϑ2, the element A partially coincides with h from (32),

A(u, φ) = 4Js2 cos2 φ − h(u, φ). (38)

The amplitude of the term ∼
φ2 involves the momentum
dependence

Bk(u, φ) = A(u, φ) − 8Js2 sin2 φ cos k. (39)

The stability of the action (37) along the trajectory φ̃(u) is
provided by the joint condition A(u, φ)>0 and Bk(u, φ)>0
for all k. It is equivalent to

4sJ cos 2φ + ωz cos φ − gu sin φ > 0. (40)

Assuming that (40) is satisfied and u and φ are slow (adiabatic
limit), the Gaussian integration over the fields 
ϑk and 
φk
yields the fluctuation correction Sfl[u, φ] to the mean-field
action. This correction reads as

Sfl = N
∫ π

−π

dk
2π

ln
∏
n�1

(
1 + A(u, φ)Bk(u, φ)

(2πsT n)2

)
. (41)

We calculate the infinite product over the Matsubara index
n � 1 using the identity (A12) from the Appendix. After that,
we take the limit T → 0 in the definition for the free-energy
correction Ffl = N−1T Sfl and find

Ffl(u, φ) = 1

2s

∫ π

−π

dk
2π

√
A(u, φ)Bk(u, φ). (42)

The integral over k yields

Ffl(u, φ) = 1

πs

√
A(u, φ)(A(u, φ) + 8s2J sin2 φ)

× E

(
16s2J sin2 φ

A(u, φ) + 8s2J sin2 φ

)
. (43)

6 4 2 2 4 6

w

6 4 2 2 4 6 u 6 4 2 2 4 6 u

(a) (b) (c)

ℱDI ℱDI ℱDI

t=0, g=0 0< t< tf, g≠0

w w
−u0 u00 0 0u

t= tf, g≠0

−u0 u0

FIG. 4. Sketch illustrating the quench dynamics of the photon
probability distribution w(x, t ) in the potential formed by the free
energy FDI(u). (a) Gaussian w(x, t ) at t = 0 when g = 0. (b) Evo-
lution of w(x, t ) after the quench of g from 0 to g ≈ gc. (c) End
of the evolution at t = tf shows two maxima of w(x, tf ) at u = ±u0

corresponding to superradiant condensates.

In the Dicke-model limit J = 0, we use A = −h and obtain

Ffl= − 1

2s
h(u, φ). (44)

The full free energy then reads as

Fmf + Ffl = 1

4
ω0u2 +

(
1 − 1

2s

)
h(u, φ). (45)

One can see from (45) that the fluctuation correction is small
at s � 1. The Dicke model for large spins has been studied
recently in Ref. [57] where the authors predicted multicritical
behavior at QPT. For nonzero J , one also finds Ffl/Fmf ∼ s−1.
Therefore, in the large-spin limit, the fluctuations are small
and the quasiclassical approach is legitimate.

In the following, based on our understanding of the free-
energy profile F , we formulate a quench protocol for the
simulation of the condensate dynamics.

IV. HYBRID QUANTUM CIRCUIT

A. Approximation of the superradiant ground state via quench

Our remaining objective is to obtain an approximate su-
perradiant state from a finite quantum circuit, which takes
the form of unitary evolution on the time interval t ∈ [0; tf ]
starting from the trivial ferromagnetic state for spin s = 1

2 ,
|FM〉. Note that |FM〉 is an eigenstate of ĤDI at g = 0. The
final state |�(t )〉 = e−iĤDIt |FM〉 is supposed to be close to
the exact eigenstate |SR〉. The evolution with ĤDI can be
understood as a quench after the coupling g is switched on
at t = 0.

In coordinate representation, the photon distribution at
t = 0 is a Gaussian wave packet, i.e.,

w(u, t = 0) = 1√
π

e−u2N , (46)

which can be interpreted as an eigenstate of a particle in the
parabolic free-energy profile FDI(u) at g = 0 [see Fig. 4(a)].
We note that, when sending N → ∞, the wave packet w(u, t )
tends to a δ singularity, which is the classical limit.

As sketched in Fig. 4(b), the quench induces an instan-
taneous change to FDI(u), and the Gaussian packet tunnels
into the side minima; the evolution should stop at the moment
t = tf when w(u, tf ) is concentrated in either of these min-
ima [Fig. 4(c)]. The many-body wave function |�(t )〉 then
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physical time

ωR

ωQ
t1

t0 t0

Q R

flux-tunable 
transmon

resonator

ωRωQ

(a) (b)

g0

SJC(θ/2)

simulation time

SJC(θ/2) SJC(θ)

t t + Δtt + Δt/4 t + 3Δt/4

Xπ(φ−)

(c)

Xπ(φ+)

ωR

ωQ

frequency

frequency

FIG. 5. (a) Qubit-resonator architecture for the Rabi model.
(b) Resonant pulse for the Jaynes-Cummings gate. (c) Pulse se-
quence representing the Rabi gate.

contains a substantial amount of condensed photons, which
is used in the further protocol detailed below.

B. Rabi, Jaynes-Cummings, and Dicke gates

We take inspiration from the digital-analog approach of
Refs. [43,44], where the authors suggested to simulate the
quantum Rabi model

ĤR = ω0â†â + g(â + â†)σ̂ x (47)

through a combination of single-qubit rotations and a hybrid
Jaynes-Cummings (JC) gate

ŜJC(θ ) = exp[−iθ (â†σ̂− + âσ̂+)], (48)

where σ̂± = 1
2 (σ̂ x ∓ iσ̂ y). The JC gate enables efficient ro-

tations in the joint qubit-resonator Hilbert space. We have in
mind an architecture as shown in Fig. 5(a), where a tunable
transmon qubit (Q) with physical frequency ωQ is coupled to
a superconducting resonator (R), modeled as an LC circuit
with fundamental frequency ωR. The JC gate can be imple-
mented as a flux pulse applied to Q, similar to two-qubit
XY gates [58]. A sketch of the pulse envelope is shown in
Fig. 5(b). The pulse tunes ωQ into a resonance with ωR during
the physical time t1, which enables the system to acquire
the desired relative phase θ = g
t = g0t1 where 
t is the
Trotterization time in the simulation, and g0 is the physical
qubit-resonator coupling. The additional buffer steps t0 may
be used to gauge out dynamic phases in ŜJC.

Reproducing the logic of Ref. [44], we now derive the Rabi
gate from the JC gate and then generalize the former to a
Dicke gate. The original idea is to decompose Eq. (47) into

ĤR = 1
2 (ĤJC + ĤAJC) (49)

where

ĤJC = Ĥ0 + 2g(â†σ̂− + âσ̂+) (50)

is the Jaynes-Cummings Hamiltonian and

ĤAJC = σ̂ xĤJCσ̂ x (51)

FIG. 6. (a) Qubit-boson architecture for the Dicke-Ising model.
Dashed red box: Rabi gate block for the first qubit. Also shown are
quantum circuits representing (b) the Rabi and (c) Dicke gates. The
gate X (1)

π (ϕ) is acting to the first qubit.

is the corresponding counter-rotating interaction term. The
free part can be chosen as

Ĥ0 = ω0(â†â − σ̂ z/2). (52)

The exact Trotter step e−iĤR
t on the simulation time interval
[t ; t + 
t] is approximated to second order by

ÛR(t + 
t, t ) = e−iĤJC
t/4e−iĤAJC
t/2e−iĤJC
t/4, (53)

which has a discretization error of O(
t3). Moving to the
frame rotating with Ĥ0, one obtains

ÛR(t + 
t, t ) = e−iĤ0(t+
t )ŜR(t + 
t, t )eiĤ0t (54)

where ŜR is the hybrid qubit-resonator gate sequence

ŜR = ŜJC(θ/2)X̂π (ϕ+)ŜJC(θ )X̂π (ϕ−)ŜJC(θ/2), (55)

where the phases are ϕ− = ω0(t + 
t/4) and ϕ+ = ω0(t +
3
t/4). For explicit derivation of the latter equation, see
Appendix C. This gate has been realized experimentally as
a pulse sequence [44], which is shown schematically in
Fig. 5(c). It consists of three analog JC gates separated by
single-qubit gates, which we have combined in the definition

X̂π (ϕ±) = exp(−iϕ±σ̂ z )σ̂ x. (56)

These single-qubit gates encode the counter-rotating evolution
due to ĤAJC as well as the necessary rotating-frame transfor-
mations.

With the multiqubit architecture of Fig. 6(a) in mind, where
only one qubit is physically coupled to the resonator, we
propose a Dicke gate ŜD implemented by applying the Rabi
gate Fig. 6(b) to Q1 only, while digital SWAP gates mediate
the interaction to the other qubits Q2 and Q3 [Fig. 6(c)]. An
alternative architecture analogous to the experimental setting
of Ref. [47] is suggested in Fig. 7. Compared to Fig. 6(a), all
qubits are tunable and directly coupled to the resonator via the
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Q1 Q2 Q3 Q4 Q5C C CC

-coupler

RC

g0

FIG. 7. Alternative qubit-boson architecture with all qubits tun-
able and coupled to the resonator. The auxiliary qubit acts as a
coupler (C) to the resonator with tunable g0.

additional g0 coupler. Rabi gates can then be applied to each
of the qubits without the need for additional SWAP gates.

C. Algorithm overview

The full algorithm, which starts from |FM〉, is shown in
Fig. 8. In each Trotter step, the Dicke gate ŜD is followed by
a set of single-qubit Z gates and two-qubit ZZ gates, which
simulate the onsite frequencies ωz and the Ising interactions
in Eq. (1) via

ZZη, j = eiησ̂ z
j σ̂

z
j+1 , Zβ, j = eiβσ̂ z

j , (57)

where the phases are given by η = J
t and β = ωz
t . To-
gether, these gates constitute our Dicke-Ising gate ŜDI, which
governs the Trotterized evolution under the Hamiltonian ĤDI

in the photon-coupled interaction picture:

Û †
0 (t )e−iĤDIt ≈

L∏
k=1

ŜDI(tk,
t ). (58)

Here Û0(t ) = e−iH0t is the free unitary evolution with the
Hamiltonian

Ĥ0 = ω0â†â − 1

2
ω0

N∑
j=1

σ̂ z
j , (59)

which form is chosen similar to Eq. (52) used previously. The
Trotter step index k runs from 1 to L, with the simulation times
given by tk = (k−1)
t and the Trotter step size 
t = t/L.

FIG. 8. Full quantum circuit implementing the cat state and
Wigner tomography. The circuit with L Trotter steps and N qubits
requires 3LN JC gates and (2L+1)(N−1) two-qubit CNOT gates.
Assuming the architecture shown in Fig. 6(a), the algorithm involves
1
2 LN (N − 1) SWAPs. The alternative architecture from Fig. 7 does
not require SWAPs.

The Dicke-Ising gate appearing in (58) is constructed as

ŜDI(tk,
t )=
⎛⎝N−1∏

j=1

ZZη, j

⎞⎠⎛⎝ N∏
j=1

Zβ, j

⎞⎠ŜD(tk,
t ). (60)

Depending on the architecture shown either in Fig. 6(a) or in
7, the Dicke gate ŜD in (60) takes the form

ŜD =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ŝ(1)

R

N−1∏
j=1

((
j∏

l=1
SWAP( j−l+1, j−l+2)

)
Ŝ(1)

R

)
, [Fig. 6(a)];

N∏
j=1

Ŝ( j)
R , [Fig. 7].

(61)
The Rabi gates Ŝ( j)

R are defined in Eq. (55). The associ-
ated phases are given by ϕ+(tk ) = ω0(tk + 3
t/4), ϕ−(tk ) =
ω0(tk + 
t/4), and the coupling angle is θ = g
t√

N
. A full

derivation of the decomposition in Eqs. (58)–(61) is provided
in Appendix C.

At the end of the full Trotter evolution, we arrive at the
many-body state |�(tf )〉 ≈ |SR〉 that approximates the exact
superradiant state. The Trotter evolution is followed by a
controlled NOT (CNOT) sequence (emulating P̂+) and mea-
surement of the first qubit. As proposed in [59], this CNOT
sequence yields the parity by measuring only a single qubit
instead of all of them. If the measurement result is z1 = 1,
then one performs Wigner tomography of the resonator. If
z1 = −1, the tomography is not performed. This completes
our algorithm. The Wigner tomography circuit is shown in
Fig. 8 inside the dashed contour. We follow the ideas of
the measurement protocols suggested in Refs. [44,54,60].
There is a representation of the Wigner function equivalent
to Eq. (10) that reads as

Wξ = 2

π
tr(�̂D̂†

ξ ρ̂phD̂ξ ), (62)

where the photon-state density matrix ρph is given by the
projection of the full many-body state on a certain spin con-
figuration. Here, �̂ = eiπ â†â is the photon parity operator,
D̂ξ = eξ â†−ξ∗â is the standard displacement operator with the
complex phase ξ = x + ip parametrized by x and p. The
displacement operator can be implemented as a drive pulse
applied to the resonator. It is depicted as the gate Dξ in Fig. 8.
The density matrix ρ̂ph becomes D̂†

ξ ρ̂phD̂ξ after this pulse.

The parity operator �̂ is implemented (i) via the gate Cπ

entangling the resonator with an off-resonant ancilla qubit
and (ii) via two Xπ/2 gates to perform Ramsey interferome-
try. Measuring the ancilla in the computational basis yields
the photon parity � = ±1 via the measurement value z0.
The measurement is performed repeatedly to obtain the re-
spective probabilities P (z0 = ±1), the difference of which
yields the Wigner function value Wξ . To implement this pro-
tocol on a physical level, we have in mind the standard
dispersive Hamiltonian for the resonator and the ancilla qubit
with frequency ω

(0)
Q ,

Ĥdisp = ωRâ†â + ω
(0)
Q |1〉〈1| − χ â†â|1〉〈1|. (63)

The evolution with Ĥdisp during time interval δt yields
the operator Û� = |0〉〈0| + ei�â†â|1〉〈1| with phase � = χδt .
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FIG. 9. Numerical simulations of exact and Trotter evolutions, without and with dissipation. (a) Exact dynamics of the photon probability
distribution w(x, t ) after the quench during time t ∈ [0, tf ]. Wigner functions at the end of evolution t = tf : (b) Wmix without parity selection,
(c) W+ for the positive parity, which shows cat-state signatures, and (d) W− for the negative parity sector. (e)–(h) The data for w(x, t ), Wmix,
and W± emulated by means of our quantum algorithm as depicted in Fig. 8 with L = 15 Trotter steps. The parameters are N = 5 qubits, a
Fock-space cutoff at 20 photons, ωz/ω0 = 0.05, J/ω0 = 1, and g/ω0 = 0.9, which places the system slightly above the QPT. (i)–(l) Data for
emulation with a Lindbladian dissipation (D1) added after each of the Dicke-Ising gates. The physical duration time of each constituent Rabi
gate is assumed to be τRabi = 100 ns; the decay rates are κ = 2π×1 kHz for the resonator and �φ = �1 = 2π×5 kHz for the qubits.

Before the tomography, the ancilla qubit is in the state
|ψ0〉 = |0〉; the Xπ/2 gate brings it into the superposition
|ψ1〉 = 1√

2
(|0〉 + i|1〉). After that, by tuning the duration δt

of the off-resonant evolution such that � = π , the entangling
gate Cπ can be realized. Depending on the photon parity, Cπ

rotates the qubit state either over the angle π or 2π along
the Bloch-sphere equator. The ancilla wave function then
becomes |ψ2〉 = 1√

2
(|0〉 + i�|1〉). The second Xπ/2 gate and

subsequent z0 measurement finalize the Ramsey interferome-
try. As a result, one measures the state |ψ3〉 = |1〉 if the parity
is even (� = 1) or |ψ3〉 = |0〉 if the parity is odd (� = −1).

V. DISCUSSION

Illustrative results of our numerical simulations of the
Dicke-Ising Hamiltonian with N = 5 qubits are shown in
Fig. 9. Our data include temporal evolution of the photon
probability distribution w(x, t ) as well as the Wigner func-
tions Wmix, W+ at the very end of the time evolution. In
Fig. 9(a) we show the exact dynamics of w(x, t ) when the evo-
lution starts with a Gaussian distribution w(x, 0) = e−x2

/
√

π ,
which corresponds the many-body wave function |�(t=0)〉 =

|FM〉. At the end of the evolution (ω0tf = 5), the wave
function |�tf 〉 is supposed to be similar to |SR〉. The dis-
tribution w(x, tf ) indeed has well-defined side peaks around
x ≈ ±4, which correspond to a finite amount of condensed
photons.

While the Wigner functions Wmix and W+ at t = tf
[Figs. 9(b) and 9(c)] look distorted, they are qualitatively
similar to the ideal distributions shown in Figs. 1(c) and
1(d). It is important to note that W+ in Fig. 9(c) retains
clear cat-state signatures, visible as blue stripes of negative
quasiprobabilities. In Figs. 9(e) and 9(h), we present the
equivalent simulation of the Trotterized dynamics with 15
steps according to our digital-analog algorithm given in Fig. 8.
The Wigner functions found through the Trotter evolution
[Figs. 9(f) and 9(g)] are in good agreement with the exact
simulation results in Figs. 9(b) and 9(c), respectively. The
Wigner functions W− [Figs. 9(d) and 9(h)] also exhibit nega-
tive values, although these are less pronounced than in W+.

In Figs. 9(i)–9(l), we show simulation data for Trotterized
evolution in the presence of noise in the circuit, which is
modeled by the Lindbladian dynamics of the density matrix;
details are provided in Appendix D. This model simulates
dissipative processes of individual qubits and photons during
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FIG. 10. (a) Expansion coefficients |cm|2 of the ferromagnetic
initial state over the eigenbasis of ĤDI. (b)–(d) Results for the exact
time evolution after the quench, with Hamiltonian parameters iden-
tical to those used in Fig. 9. (b) Fidelity F(t ) between the reduced
density matrices for photons corresponding to the simulated wave
function ρ(t ) and the ground state of ĤDI, ρSR. (c) Time dependence
of the probabilities to measure positive and negative qubit parities
〈P̂±(t )〉. (d) Time dependence of the photon number 〈â†â〉.

the physical operation time of Rabi gates. In our simula-
tions, we choose eperimentally relevant qubit decay rates of
�φ = �1 = 2π×5 kHz [47] and Rabi gate time of τRabi = 100
ns [44]. As the simulations show, the signatures of cat states
are well resolved for high-quality resonators with decay rates
κ of just a few kiloherz [49].

Under exact quench dynamics, the many-body wave func-
tion |�(t )〉 evolves as a superposition of the eigenstates |�m〉
of the Hamiltonian ĤDI:

|�(t )〉 =
∑

m

e−iεmt cm|�m〉. (64)

Here, m enumerates all many-body eigenstates, with
m = 0 corresponding to the ground state and m � 1 to the
excited states. The expansion coefficients cm = 〈�m|FM〉 are
the overlaps of the eigenstates with the initial ferromag-
netic state |FM〉. In Fig. 10(a), we show the squared overlap
coefficients |cm|2 for 0 � m � 40. The nonvanishing over-
lap between the ferromagnetic initial state and the exact

superradiant ground state |SR〉 = |�0〉 is given by |c0|2 ≈ 0.2,
which reflects the small underbarrier tunnel probability in the
ground state slightly above the critical point.

In Figs. 10(b)–10(d) we show results for the exact time
evolution after the quench. Figure 10(b) shows the temporal
dependence of the fidelity F(t ) = (tr

√√
ρSRρ(t )

√
ρSR)

2
be-

tween the reduced density matrices ρ(t ) = trσ [|�(t )〉〈�(t )|]
and ρSR = trσ [|SR〉〈SR|]. The nonzero overlap and fidelity
indicate that more than half of the total photon population
resides in the superradiant condensate. Also in Fig. 10(c) ,
we present the time evolution of the probabilities to measure
even or odd qubit parity, 〈P̂±(t )〉. These begin at 〈P̂+〉 = 1 and
〈P̂−〉 = 0 at t = 0, reflecting fully imbalanced initial proba-
bilities, and approach 1

2 at the final time t = tf . This parity
equalization provides an additional signature of superradiance
in this protocol.

In Fig. 10(d) we show the time dependence of the photon
number 〈â†â〉 after the quench. It starts from zero in the
normal phase and increases to ≈3 at the final time, confirming
that boundary effects from the 20-photon Fock-space cutoff
are negligible.

For the total gate count, we obtain the following estimation.
Each Rabi gate SR involves three JC gates. Assuming the 1D
qubit-boson architecture from Fig. 6(a), where the qubit at one
end of the chain is coupled to the resonator, the Dicke gate
SD has N SR gates and 1

2 N (N−1) SWAPs. For the star-chain
hybrid geometry from Fig. 7, SWAPs are not required. The
Dicke-Ising SDI gate has one SD gate and 2(N−1) CNOTs.
Parity selection involves (N−1) CNOTs. To summarize, the
circuit with L Trotter steps requires{

1
2 LN (N − 1) [1D chain Fig. 6(a)]

0 [star-chain Fig. 7] SWAPs,

(2L + 1)(N − 1) CNOTs,

3LN JC gates.

Based on these numbers, we conjecture that the algorithm
is capable of simulating the QPT after a quench as well as
the cat-state preparation with a finite depth quantum circuit
without fine-tuning parameters.

The Wigner tomography represents a substantial ex-
perimental overhead. It requires careful calibration of the
dispersive coupling strength (χ ) and evolution time (δt). To
achieve an adequate resolution in the phase space, a two-
dimensional grid of displacement complex parameter ξ must
be sampled, typically to ∼102×102 points [54]. At each
point, repeated ancilla qubit measurements (on the order of
103 shots) are necessary to accurately estimate the parity
expectation value, resulting in total counts around several
million. Ideally, the dispersive interaction enables quantum
nondemolition measurements of the photon parity. In practice,
the readout process introduces partial backaction on the res-
onator’s state. The qubit measurement does not fully collapse
the resonator into a specific Fock state, but rather into a state
with a given parity that preserves some coherence within the
corresponding Hilbert subspace.

While implementing the continuous-variable representa-
tion with x and p, one concerns about resonator’s leakage. In
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the superconducting platform, the resonator coherence times
are sufficiently long compared to the operation times guaran-
teed by the condition χ � 〈â†â〉κ, �φ, �1, which makes the
leakage effects negligible. The experimental value χ ∼ 2.4
MHz [54], and the average photon number 〈â†â〉 ≈ 3 is es-
timated from simulations data in Fig. 10(d). We note that in
systems with shorter-lived modes, such as trapped-ion imple-
mentations, mitigating decoherence would indeed be a critical
requirement.

VI. CONCLUSION AND OUTLOOK

In this work, we proposed a digital-analog quantum algo-
rithm for simulating the superradiant QPT in the Dicke-Ising
model, where individual qubits interact with each other and
with a common photon mode. The algorithm features a se-
quence of analog Jaynes-Cummings gates combined with
standard digital single-qubit and two-qubit rotations. This
quantum circuit is capable of simulating quench dynamics
and the QPT between the normal and superradiant phases.
We proposed a protocol based on qubit-parity measurements
that allows one to obtain a Schrödinger cat state as the output
of resonator Wigner tomography. Additionally, we applied a
path-integral description to the model via a bosonic angular
representation of the spin operators and formulated the qua-
siclassical description of fluctuations in the large-spin limit.
This approach can be useful for further studies of macroscopic
quantum tunneling. Finally, we found that the qubit-qubit
interaction leads to an emergent Ising transition driven by
the Kibble-Zurek mechanism in imaginary time. The qubit
subsystem becomes critical for certain quantum trajectories
of the photon field, making the fluctuations in the superradiant
phase nontrivial, in contrast to the conventional Dicke model.
As an outlook for future investigations in this direction, an
interesting question to address is the behavior of the entangle-
ment entropy and the value of the central charge at the QPT
and in the superradiant phase.
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APPENDIX A: MEAN-FIELD FREE ENERGY
FOR DICKE-ISING HAMILTONIAN AT ωz = 0

In this part of the Appendix, we derive the free energy (20)
from the Hamiltonian (1) assuming ωz = 0. In the limit of
zero ωz, only two types of spin operators remain in the
Hamiltonian, σ x

q and σ z
qσ z

q+1. Applying the Jordan-Wigner
representation to them gives

σ̂ x
q = ĉ†

qĉq − ĉqĉ†
q,

σ̂ z
q σ̂ z

q+1 = ĉ†
qĉq+1 + ĉ†

q+1ĉq + ĉ†
qĉ†

q+1 + ĉq+1ĉq. (A1)

The Hamiltonian (1) after this transformation has bilinear
fermion combinations

ĤDI = ω0â†â − J
N∑

q=1

(ĉ†
qĉq+1 + ĉ†

q+1ĉq + ĉ†
qĉ†

q+1 + ĉq+1ĉq)

+ g√
N

(â† + â)
N∑

q=1

(ĉ†
qĉq − ĉqĉ†

q ). (A2)

We note that for ωz �= 0 additional terms ∼σ̂ z
q arise, yielding

nonlocal fermion strings and resulting in a more complicated
derivation of the free energy. Consider the partition function
Z = tr(e−ĤDI/T ) at finite temperature T . It is reduced to the
Matsubara path integral

Z =
∫

d[a, ā, c, c̄]e−S[a,ā,c,c̄] (A3)

over complex boson fields a(τ ), ā(τ ) and Grassmann fields
cq(τ ), c̄q(τ ), where τ is the imaginary time τ ∈ [0, 1/T ].
These fields describe, respectively, photons and Jordan-
Wigner fermions. The Matsubara action in (A3) is

S =
∫ 1/T

0
dτ

(
ā∂τ a +

N∑
q=1

c̄∂τ c + HDI[a, ā, c, c̄]

)
. (A4)

Assuming periodic boundary conditions for the Ising chain,
we introduce the wave numbers k = 2πn

N − π with 0 � n < N
spanning a Brillouin zone. The Fourier transformation into k
space for Grassmann fields reads as ck = 1√

N

∑N
q=1 e−ikqcq.

The action (A4) can be parametrized via Nambu vectors
�k = [ck c̄−k]T in γ space resulting in the following form:

S = Sph − 1

2

∑
k

∫ 1/T

0
dτ �T

−kγxG−1
k [a, ā]�k, (A5)

where the inverted Green function (Lagrangian) reads as

−G−1
k [a(τ ), ā(τ )] =

[
∂τ − 2J cos k + 2g[ā(τ ) + a(τ )]/

√
N −2iJ sin k

2iJ sin k ∂τ + 2J cos k − 2g[ā(τ ) + a(τ )]/
√

N

]
(A6)
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and

Sph =
∫ 1/T

0
dτ (ā∂τ a + ω0āa) (A7)

is the free-photon action. Note that G−1
k [a, ā] is a nonstation-

ary matrix because of time-depending a fields and, therefore,
an inversion is a nontrivial task. Below we tackle this problem
in a mean-field approximation.

We parametrize the complex ā and a through real fields u
and v,

a(τ ) =
√

N
u(τ ) + iv(τ )

2
, ā(τ ) =

√
N

u(τ ) − iv(τ )

2
.

(A8)
After a Fourier transformation defined as a(τ ) =∑

n ane−i2πnT τ and ā(τ ) = ∑
n anei2πnT τ , we take the

Gaussian integrals over real boson vn and real Grassmann �k
fields. As a result, we receive an effective action for the real
boson u(τ ), which is a sum of the free-boson action Su and

the spin contribution given by the logarithm of the fermion
determinant,

Seff = 1

4
N

∫ 1/T

0

(
1

ω0
(∂τ u)2 + ω0u2

)
dτ

− 1

2
ln det

(−G−1
k [u]

)
. (A9)

It features the inverted Green function (A6) written
as G−1

k [u] = −γ0∂τ − Hk(τ ), where the τ -dependent
Hamiltonian matrix in Nambu γ space reads as

Hk(τ ) = −2J (γz cos k − γy sin k) + 2gγzu(τ ). (A10)

In the mean-field approximation, we assume u(τ ) = const
neglecting temporal fluctuations. The fermion determinant
in (A9) can be found analytically through an infinite product
over Matsubara frequencies with 2×2 γ -matrix determinants,

ln det
(
G−1

k [u]Gk[0]
) = N

∫ π

−π

dk
2π

ln

(∏
n

detγ [−i2πnT γ0 − 2J (γz cos k − γy sin k) + 2gγzu]

detγ [−i2πnT γ0 − 2J (γz cos k − γy sin k)]

)
. (A11)

We added Gk[0] to regularize the action. This factor emerges
from normalizing the partition sum by its value at g = 0. To
compute the infinite product we use the identity∏

n�1

(1 + x2/n2) = 1

π
√

x
sinh(π |x|). (A12)

Taking the leading term ∼ 1
T in the limit of low temperatures,

and then integrating over k, we arrive at the mean-field action

Smf = N
∫ 1/T

0

(
(∂τ u)2

4ω0
+ F (u)

)
dτ (A13)

with the normalized free energy F (u) = 1
N FDI(u) provided in

Eq. (21),

F (u) = 1

4
ω0u2 − 2

π
(J + g|u|)E

[
4gJ|u|

(J + g|u|)2

]
. (A14)

APPENDIX B: INSTANTON TRAJECTORY

Consider the mean-field part of the action (A13). When the
system is in the superradiant phase, a variation of Smf by u
yields the equation for an instanton saddle-point trajectory,

∂2
τ u − 2ω0∂uF (u) = 0, (B1)

with boundary conditions u(τ = 0) = −u(τ = 1/T ) = −u0,
where u0 > 0 is a nonzero solution of the equation
∂uF (u) = 0 for the superradiant order parameter. There is also
an integral motion, which is analogous to the full energy in
classical mechanics. It reads as

− (∂τ u)2

4ω0
+ F (u) = F (−u0), (B2)

where the constant F (−u0) is given by the free-energy min-
imum at u = −u0. The instanton solution is given by an

implicit function uinst (τ ), which follows from Eq. (B2) as

τ =
∫ uinst (τ )

−u0

du√
2ω0[F (u) − F (−u0)]

. (B3)

The schematic shape of the solution that follows from this
integral is presented in Fig. 3(c).

APPENDIX C: DERIVATION OF THE CIRCUIT
STRUCTURE

In this appendix, we comment on the derivation of the Rabi
gate (48) and the sequence of gates (61) that simulate the
evolution of the Dicke-Ising model. We begin with the Rabi
model. For its Trotterized evolution operator

ÛR(t ) =
N∏

k=1

ÛR(tk+1, tk ), tk = (k − 1)
t, (C1)

each step is approximated by a sequence of three evolutions
governed by the JC Hamiltonian (47), as shown in Eq. (53) of
the main text. It is advantageous to rewrite this equation in the
following form:

ÛR(tk+1, tk ) = ÛJC
(
tk + 
t, tk + 3

4
t
)
σ̂ x ÛJC

(
tk + 3

4
t, tk

+ 1
4
t

)
σ̂ x ÛJC

(
tk + 1

4
t, tk
)
, (C2)

where ÛJC(t ) denotes the evolution operator of the JC model.
Our goal is to relate this Trotterized evolution to a sequence

of quantum gates that can be implemented on quantum hard-
ware, including the JC gate (48) introduced in the main text.
To this end, we switch to the interaction picture with respect
to the free Hamiltonian Ĥ0 [see Eqs.(52) and (54)]. Using the
identity

eiĤ0tÛJC(t, t ′)e−iĤ0t ′ = ŜJC(θ ), θ = g(t − t ′), (C3)
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we find that the above unitary transformation of ÛJC yields
the JC gate (48) with the phase determined by a product of the
time interval and the strength of interaction. Applying this to
the full Trotterized step (C2), we obtain

ŜR(tk+1, tk ) := eiĤ0tk+1ÛR(tk+1, tk )e−iĤ0tk

= ŜJC(θ/2)X̂π (ϕ+)ŜJC(θ )X̂π (ϕ−)ŜJC(θ/2),
(C4)

where the rotated X gates X̂π (ϕ±) are defined in Eq. (56) with
phases ϕ− = ω0(tk + 
t/4) and ϕ+ = ω0(tk + 3
t/4). These
arise from expressing the Pauli σ̂ x operators in the rotating
frame:

X̂π (ϕ+) = e− i
2 ω0(tk+ 3

4 
t )σ̂ z

σ̂ xe
i
2 ω0(tk+ 3

4 
t )σ̂ z

≡ exp (−iϕ+σ̂ z )σ̂ x, (C5)

with a similar expression for X̂π (ϕ−). In this way, we have
derived the unitary gate (55), which emulates a single Trotter
step of the Rabi model in the rotating frame.

Let us now discuss how the gate sequence (60), which
approximates the evolution of the Dicke-Ising model, can be
justified. To this end, we begin by describing the construction
of the Dicke gate ŜD, defined in Eq. (61), in the case of two
spins. It will become clear that a generalization to the case
with an arbitrary number of spins N is straightforward. For
N = 2, we rewrite the Dicke Hamiltonian as a sum of three
terms:

ĤD = Ĥ (1) + Ĥ (2) − ĥ0, Ĥ ( j) = ĥ0 + g(â + â†)σ̂ x
j ,

ĥ0 = ω0â†â. (C6)

This decomposition naturally suggests a Trotterization
scheme of the form

ÛD(tk+1, tk ) ≈ Û (2)
R (tk + 
t, tk ) eiĥ0
t Û (1)

R (tk + 
t, tk ),
(C7)

where each Û ( j)
R denotes the evolution operator generated by

the Rabi Hamiltonian Ĥ ( j). For these, we apply the same ap-
proximation as previously used [see Eq. (C2)]. It is important
to emphasize that there are multiple ways to Trotterize the
evolution operator corresponding to ĤD. Our specific choice
of Trotterization is motivated by its favorable error properties:
the discretization error scales as O(
t3), which matches that
of the Rabi gate (55).

It is now instructive to move to the rotating frame defined
by the free-bosonic Hamiltonian ĥ0. Let us denote evolution
operators in this frame by S̃(t, t ′), in contrast to Ŝ(t, t ′),
which refers to the interaction representation with respect
to the Hamiltonian Ĥ0 used in the main text. Noting that
eiĥ0
t ≡ Û0(tk, tk + 
t ) represents backward time evolution
under the free Hamiltonian, we can deduce from Eq. (C7) the
following relation:

S̃D(tk+1, tk ) = S̃(2)
R (tk + 
t, tk )̃S(1)

R (tk + 
t, tk ). (C8)

Here, the Rabi gates in the new rotating frame are related to
the basic gates (55) by simple Z rotations:

S̃( j)
R (tk + 
t, tk ) = e

i
2 φk+1σ̂

z
j Ŝ( j)

R (tk + 
t, tk )e− i
2 φk σ̂

z
j ,

φk = ω0tk . (C9)

The same applies to the full gate S̃D. This gate differs from its
counterpart ŜD by a similarity transformation, consisting of Z
rotations acting on both spins. Consequently, the structure of
Eq. (C8) also holds in the rotating frame defined with respect
to Ĥ0:

ŜD(tk+1, tk ) = Ŝ(2)
R (tk + 
t, tk )Ŝ(1)

R (tk + 
t, tk ). (C10)

Thus, we have arrived at the result (61), provided the qubit-
boson architecture permits interactions between any qubit and
the resonator. In the case of restricted connectivity, SWAP
gates must be used, leading to the equivalent expression:

ŜD(tk+1, tk )

= SWAP(12)Ŝ(1)
R (tk + 
t, tk )SWAP(12)Ŝ(1)

R (tk + 
t, tk ).
(C11)

The above considerations can be readily extended to the
case of an arbitrary number of qubits N . Indeed, the Dicke
Hamiltonian can be rewritten as follows:

ĤD =
N∑

j=1

Ĥ ( j) − (N − 1)ĥ0, (C12)

and the corresponding Trotterization scheme takes the form

ÛD(tk+1, tk ) ≈ Û (N )(tk + 
t, tk )
N−1∏
j=1

eiĥ0
t Û ( j)(tk + 
t, tk ),

(C13)
which is a straightforward generalization of Eq. (C7). The
result (61) from the main text then follows by applying
the same reasoning as in the case of N = 2.

It remains to discuss how the Ising-type terms in the
Hamiltonian (1) can be incorporated into the above Trotter-
ized scheme. To justify the appearance of Z and ZZ gates
in Eq. (60), we assume that the Ising Hamiltonian is applied
during the time interval [tk + 
t, tk] in the form of δ pulses:

Ĥ (t ) = ĤD − η δ(t − tk+1)
N−1∑
j=1

σ̂ z
j σ̂

z
j+1− β δ(t − tk+1)

N∑
j=1

σ̂ z
j ,

η = J
t, β = ωz
t, (C14)

so that the dynamics depends only on the effective phases η

and β. This ansatz corresponds to a separate Trotterization of
the Dicke and Ising Hamiltonians and directly leads to the gate
sequence given in Eq. (60).

APPENDIX D: MODEL OF A DISSIPATION
IN THE CIRCUIT

In the emulation of noise effects upon Trotterization, we
apply Lindbladian dissipative dynamics after each of the L
unitariy ŜDI gates. This model of noise takes into account
dephasing (�φ) and relaxation (�1) rates of the qubits, and
assumes Rabi gate duration physical time τRabi. When a qubit
is detuned from the resonator, it is assumed to remain fully
coherent. Photon relaxation during a single ŜDI gate occurs at
a rate κ at a time interval NτR, due to N Rabi gates being ap-
plied sequentially. We do not account for errors introduced by
CNOT or SWAP gates; their operation times are also omitted
from the noise model.
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Consider the first Trotter step where the initial state ρ̂0 = |FM〉〈FM| evolves into a mixed state ρ̂1. This step proceeds as
follows: (i) a unitary transformation is applied to obtain ρ̂ ′

0 = ŜDIρ̂0Ŝ†
DI, (ii) the state ρ̂ ′

0 then undergoes dissipative evolution
according to the Lindblad master equation

d ρ̂

dt
= Nκ

(
âρ̂â† − 1

2
{â†â, ρ̂}

)
+ �φ

2

∑
j

(
σ̂ z

j ρ̂σ̂ z
j − ρ̂

) + �1

∑
j

(
σ̂−

j ρ̂σ̂+
j − 1

2
{σ̂+

j σ̂−
j , ρ̂}

)
. (D1)

The evolution governed by this equation is applied for a time interval τR, transforming ρ̂ ′
0 into ρ̂1. The prefactor N in front of κ

reflects that fact that the Rabi gate is applied N times to the resonator.

[1] C. F. Lee and N. F. Johnson, First-order superradiant phase
transitions in a multiqubit cavity system, Phys. Rev. Lett. 93,
083001 (2004).

[2] S. Gammelmark and K. Mølmer, Phase transitions and Heisen-
berg limited metrology in an Ising chain interacting with a
single-mode cavity field, New J. Phys. 13, 053035 (2011).

[3] Y. Zhang, L. Yu, J. Q. Liang, G. Chen, S. Jia, and F. Nori,
Quantum phases in circuit QED with a superconducting qubit
array, Sci. Rep. 4, 4083 (2014).

[4] J. Gelhausen, M. Buchhold, A. Rosch, and P. Strack, Quantum-
optical magnets with competing short- and long-range in-
teractions: Rydberg-dressed spin lattice in an optical cavity,
SciPost Phys. 1, 004 (2016).

[5] J. Rohn, M. Hörmann, C. Genes, and K. P. Schmidt, Ising model
in a light-induced quantized transverse field, Phys. Rev. Res. 2,
023131 (2020).

[6] A. Schellenberger and K. P. Schmidt, (Almost) everything is a
dicke model-mapping non-superradiant correlated light-matter
systems to the exactly solvable Dicke model, SciPost Phys.
Core 7, 038 (2024).

[7] A. Langheld, M. Hörmann, and K. P. Schmidt, Quantum phase
diagrams of Dicke-Ising models by a wormhole algorithm,
arXiv:2409.15082.

[8] T. O. Puel and T. Macrì, Confined meson excitations in rydberg-
atom arrays coupled to a cavity field, Phys. Rev. Lett. 133,
106901 (2024).

[9] V. N. Popov and S. A. Fedotov, The functional-integration
method and diagram technique for spin systems, Zh. Eksp. Teor.
Fiz. 94, 183 (1988).

[10] C. Emary and T. Brandes, Chaos and the quantum phase transi-
tion in the dicke model, Phys. Rev. E 67, 066203 (2003).

[11] P. R. Eastham and P. B. Littlewood, Bose condensation of cavity
polaritons beyond the linear regime: The thermal equilibrium of
a model microcavity, Phys. Rev. B 64, 235101 (2001).

[12] E. G. Dalla Torre, S. Diehl, M. D. Lukin, S. Sachdev, and P.
Strack, Keldysh approach for nonequilibrium phase transitions
in quantum optics: Beyond the Dicke model in optical cavities,
Phys. Rev. A 87, 023831 (2013).

[13] E. G. Dalla Torre, Y. Shchadilova, E. Y. Wilner, M. D. Lukin,
and E. Demler, Dicke phase transition without total spin con-
servation, Phys. Rev. A 94, 061802(R) (2016).

[14] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre,
Introduction to the Dicke model: From equilibrium to nonequi-
librium, and vice versa, Adv. Quantum Technol. 2, 1800043
(2019).

[15] D. S. Shapiro, W. V. Pogosov, and Y. E. Lozovik, Universal
fluctuations and squeezing in a generalized Dicke model near
the superradiant phase transition, Phys. Rev. A 102, 023703
(2020).

[16] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael,
Proposed realization of the dicke-model quantum phase transi-
tion in an optical cavity QED system, Phys. Rev. A 75, 013804
(2007).

[17] P. Nataf and C. Ciuti, Vacuum degeneracy of a circuit QED
system in the ultrastrong coupling regime, Phys. Rev. Lett. 104,
023601 (2010).

[18] O. Viehmann, J. von Delft, and F. Marquardt, Superradiant
phase transitions and the standard description of circuit QED,
Phys. Rev. Lett. 107, 113602 (2011).

[19] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke
quantum phase transition with a superfluid gas in an optical
cavity, Nature (London) 464, 1301 (2010).

[20] X.-F. Zhang, Q. Sun, Y.-C. Wen, W.-M. Liu, S. Eggert, and
A.-C. Ji, Rydberg polaritons in a cavity: A superradiant solid,
Phys. Rev. Lett. 110, 090402 (2013).

[21] M. P. Baden, K. J. Arnold, A. L. Grimsmo, S. Parkins, and M. D.
Barrett, Realization of the Dicke model using cavity-assisted
Raman transitions, Phys. Rev. Lett. 113, 020408 (2014).

[22] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A. Hemmerich,
Dynamical phase transition in the open Dicke model, Proc.
Natl. Acad. Sci. USA 112, 3290 (2015),.

[23] A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Gärttner,
K. A. Gilmore, J. E. Jordan, J. Cohn, J. K. Freericks, A. M. Rey,
and J. J. Bollinger, Verification of a many-ion simulator of the
Dicke model through slow quenches across a phase transition,
Phys. Rev. Lett. 121, 040503 (2018).

[24] J. Klinder, H. Keßler, M. R. Bakhtiari, M. Thorwart, and
A. Hemmerich, Observation of a superradiant Mott insulator
in the Dicke-Hubbard model, Phys. Rev. Lett. 115, 230403
(2015).

[25] G. Ferioli, A. Glicenstein, I. Ferrier-Barbut, and A. Browaeys,
A non-equilibrium superradiant phase transition in free space,
Nat. Phys. 19, 1345 (2023).

[26] C. Liedl, F. Tebbenjohanns, C. Bach, S. Pucher, A.
Rauschenbeutel, and P. Schneeweiss, Observation of superra-
diant bursts in a cascaded quantum system, Phys. Rev. X 14,
011020 (2024).

[27] J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S.
Filipp, P. J. Leek, A. Blais, and A. Wallraff, Dressed collective
qubit states and the Tavis-Cummings model in circuit QED,
Phys. Rev. Lett. 103, 083601 (2009).

[28] M. Feng, Y. P. Zhong, T. Liu, L. L. Yan, W. L. Yang, J.
Twamley, and H. Wang, Exploring the quantum critical behav-
ior in a driven Tavis–Cummings circuit, Nat. Commun. 6, 7111
(2015).

[29] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and
K. Semba, Superconducting qubit–oscillator circuit beyond the
ultrastrong-coupling regime, Nat. Phys. 13, 44 (2017).

042412-14

https://doi.org/10.1103/PhysRevLett.93.083001
https://doi.org/10.1088/1367-2630/13/5/053035
https://doi.org/10.1038/srep04083
https://doi.org/10.21468/SciPostPhys.1.1.004
https://doi.org/10.1103/PhysRevResearch.2.023131
https://doi.org/10.21468/SciPostPhysCore.7.3.038
https://arxiv.org/abs/2409.15082
https://doi.org/10.1103/PhysRevLett.133.106901
http://jetp.ras.ru/cgi-bin/dn/e_067_03_0535.pdf
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevB.64.235101
https://doi.org/10.1103/PhysRevA.87.023831
https://doi.org/10.1103/PhysRevA.94.061802
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1103/PhysRevA.102.023703
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1103/PhysRevLett.104.023601
https://doi.org/10.1103/PhysRevLett.107.113602
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevLett.110.090402
https://doi.org/10.1103/PhysRevLett.113.020408
https://doi.org/10.1073/pnas.1417132112
https://doi.org/10.1103/PhysRevLett.121.040503
https://doi.org/10.1103/PhysRevLett.115.230403
https://doi.org/10.1038/s41567-023-02064-w
https://doi.org/10.1103/PhysRevX.14.011020
https://doi.org/10.1103/PhysRevLett.103.083601
https://doi.org/10.1038/ncomms8111
https://doi.org/10.1038/nphys3906


DIGITAL-ANALOG SIMULATIONS OF SCHRÖDINGER … PHYSICAL REVIEW A 112, 042412 (2025)

[30] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano,
Ultrastrong coupling regimes of light-matter interaction,
Rev. Mod. Phys. 91, 025005 (2019).

[31] A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta,
and F. Nori, Ultrastrong coupling between light and matter,
Nat. Rev. Phys. 1, 19 (2019).

[32] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Circuit
quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021).

[33] W. Qin, A. F. Kockum, C. S. Muñoz, A. Miranowicz, and
F. Nori, Quantum amplification and simulation of strong and
ultrastrong coupling of light and matter, Phys. Rep. 1078, 1
(2024).

[34] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[35] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[36] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
Büchler, A Rydberg quantum simulator, Nat. Phys. 6, 382
(2010).

[37] L. Bassman Oftelie, M. Urbanek, M. Metcalf, J. Carter, A. F.
Kemper, and W. A. de Jong, Simulating quantum materials with
digital quantum computers, Quantum Sci. Technol. 6, 043002
(2021).

[38] S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov, P. Rall,
and T. J. Yoder, High-threshold and low-overhead fault-tolerant
quantum memory, Nature (London) 627, 778 (2024).

[39] A. Miessen, D. J. Egger, I. Tavernelli, and G. Mazzola, Bench-
marking digital quantum simulations above hundreds of qubits
using quantum critical dynamics, PRX Quantum 5, 040320
(2024).

[40] B. Fauseweh, Quantum many-body simulations on digital
quantum computers: State-of-the-art and future challenges,
Nat. Commun. 15, 2123 (2024).

[41] A. Macridin, P. Spentzouris, J. Amundson, and R. Harnik,
Electron-phonon systems on a universal quantum computer,
Phys. Rev. Lett. 121, 110504 (2018).

[42] A. Macridin, P. Spentzouris, J. Amundson, and R. Harnik, Digi-
tal quantum computation of fermion-boson interacting systems,
Phys. Rev. A 98, 042312 (2018).

[43] A. Mezzacapo, U. Las Heras, J. S. Pedernales, L. DiCarlo, E.
Solano, and L. Lamata, Digital quantum Rabi and Dicke models
in superconducting circuits, Sci. Rep. 4, 7482 (2014).

[44] N. K. Langford, R. Sagastizabal, M. Kounalakis, C. Dickel,
A. Bruno, F. Luthi, D. J. Thoen, A. Endo, and L. DiCarlo,
Experimentally simulating the dynamics of quantum light and
matter at deep-strong coupling, Nat. Commun. 8, 1715 (2017).

[45] Y. Liu, S. Singh, K. C. Smith, E. Crane, J. M. Martyn,
A. Eickbusch, A. Schuckert, R. D. Li, J. Sinanan-Singh, M.
B. Soley, T. Tsunoda, I. L. Chuang, N. Wiebe, and S. M.
Girvin, Hybrid oscillator-qubit quantum processors: Instruction
set architectures, abstract machine models, and applications,
PRX Quantum (2025).

[46] S. Kumar, N. N. Hegade, A.-M. Visuri, B. A. Bhargava,
J. F. R. Hernandez, E. Solano, F. Albarrán-Arriagada, and G. A.
Barrios, Digital-analog quantum computing of fermion-boson
models in superconducting circuits, npj Quantum Inf. 11, 43
(2025).

[47] G. Huber, F. Roy, L. Koch, I. Tsitsilin, J. Schirk, N. Glaser, N.
Bruckmoser, C. Schweizer, J. Romeiro, G. Krylov, M. Singh,

F. Haslbeck, M. Knudsen, A. Marx, F. Pfeiffer, C. Schneider, F.
Wallner, D. Bunch, L. Richard, L. Södergren, K. Liegener, M.
Werninghaus, and S. Filipp, Parametric multielement coupling
architecture for coherent and dissipative control of supercon-
ducting qubits, PRX Quantum 6, 030313 (2025).

[48] M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek,
K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J.
Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J.
Schoelkopf, Quantum memory with millisecond coherence in
circuit QED, Phys. Rev. B 94, 014506 (2016).

[49] S. Ganjam, Y. Wang, Y. Lu, A. Banerjee, C. U. Lei, L.
Krayzman, K. Kisslinger, C. Zhou, R. Li, Y. Jia, M. Liu,
L. Frunzio, and R. J. Schoelkopf, Surpassing millisecond co-
herence in on chip superconducting quantum memories by
optimizing materials and circuit design, Nat. Commun. 15,
3687 (2024).

[50] M. Um, J. Zhang, D. Lv, Y. Lu, S. An, J.-N. Zhang, H. Nha,
M. S. Kim, and K. Kim, Phonon arithmetic in a trapped ion
system, Nat. Commun. 7, 11410 (2016).

[51] Y. Wang, S. Crain, C. Fang, B. Zhang, S. Huang, Q. Liang, P. H.
Leung, K. R. Brown, and J. Kim, High-fidelity two-qubit gates
using a microelectromechanical-system-based beam steering
system for individual qubit addressing, Phys. Rev. Lett. 125,
150505 (2020).

[52] D. S. Shapiro, Y. Weber, T. Bode, F. K. Wilhelm, and D.
Bagrets, Data for digital-analog simulations of schrödinger
cat states in the Dicke-Ising model, https://zenodo.org/records/
16581022.

[53] Z. Leghtas, G. Kirchmair, B. Vlastakis, M. H. Devoret, R. J.
Schoelkopf, and M. Mirrahimi, Deterministic protocol for
mapping a qubit to coherent state superpositions in a cavity,
Phys. Rev. A 87, 042315 (2013).

[54] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio,
S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J.
Schoelkopf, Deterministically encoding quantum information
using 100-Photon Schrödinger cat states, Science 342, 607
(2013).

[55] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard,
M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret,
Stabilization and operation of a Kerr-cat qubit, Nature (London)
584, 205 (2020).

[56] R. Lescanne, M. Villiers, T. Peronnin, A. Sarlette, M. Delbecq,
B. Huard, T. Kontos, M. Mirrahimi, and Z. Leghtas, Exponen-
tial suppression of bit-flips in a qubit encoded in an oscillator,
Nat. Phys. 16, 509 (2020).

[57] Y. Xu, D. Fallas Padilla, and H. Pu, Multicriticality and quan-
tum fluctuation in a generalized Dicke model, Phys. Rev. A 104,
043708 (2021).

[58] Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A.
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