001046968 001__ 1046968 001046968 005__ 20251010202041.0 001046968 020__ $$a978-3-032-04557-7 001046968 020__ $$a978-3-032-04558-4 (electronic) 001046968 0247_ $$2doi$$a10.1007/978-3-032-04558-4_52 001046968 0247_ $$2ISSN$$a0302-9743 001046968 0247_ $$2ISSN$$a1611-3349 001046968 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04036 001046968 037__ $$aFZJ-2025-04036 001046968 041__ $$aEnglish 001046968 082__ $$a006.3 001046968 1001_ $$0P:(DE-Juel1)179447$$avan der Vlag, Michiel$$b0$$eCorresponding author 001046968 1112_ $$a34th International Conference on Artificial Neural Networks$$cKaunas$$d2025-09-09 - 2025-09-12$$gICANN$$wLithuania 001046968 245__ $$aComplexity and Criticality in Neuro-Inspired Reservoirs 001046968 250__ $$a1st ed. 2026 001046968 260__ $$aCham$$bSpringer Nature Switzerland$$c2026 001046968 29510 $$a[Ebook] Artificial Neural Networks and Machine Learning – ICANN 2025 : 34th International Conference on Artificial Neural Networks, Kaunas, Lithuania, September 9–12, 2025, Proceedings, Part I / Senn, Walter ; Sanguineti, Marcello ; Saudargiene, Ausra ; Tetko, Igor ; Villa, Alessandro E. P. ; Jirsa, Viktor K. ; Bengio, Yoshua 1st ed. 2026, Cham : Springer Nature Switzerland, 2026, 001046968 300__ $$a645 - 657 001046968 3367_ $$2ORCID$$aCONFERENCE_PAPER 001046968 3367_ $$033$$2EndNote$$aConference Paper 001046968 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$mjournal 001046968 3367_ $$2BibTeX$$aINPROCEEDINGS 001046968 3367_ $$2DRIVER$$aconferenceObject 001046968 3367_ $$2DataCite$$aOutput Types/Conference Paper 001046968 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1760096738_15552 001046968 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb 001046968 4900_ $$aLecture Notes in Computer Science$$v16068 001046968 500__ $$aThis preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in "Artificial Neural Networks and Machine Learning – ICANN 2025", and is available online at https://link.springer.com/book/10.1007/978-3-032-04558-4 001046968 520__ $$aUnderstanding information propagation and computational capabilities in large-scale brain models is crucial for advancing both neuroscience and neuro-inspired computing. It remains unknown how complexity affects the performance of simulated biological networks in predicting non-linear dynamics. Here, this issue is addressed by integrating reservoir computing, a recurrent neural network architecture, with The Virtual Brain, a whole-brain simulation platform, to create amore neurophysiologically-plausible machine learning framework. Metrics derived from nonlinear dynamics and complexity theory, including the largest Lyapunov exponent, which captures chaotic behavior, Detrended Fluctuation Analysis, which assesses temporal correlations, and the Perturbational Complexity Index, which evaluates the complexity of neural responses, provide a quantitative framework for characterizing cognitive dynamics. Deploying this framework on High Performance Computing enables a thorough exploration of the vast parameter space, utilizing a diverse evaluation framework that assesses simulations through these metrics, implemented on Graphics Processing Units (GPUs). This enables the identification of optimal parameter regimes, a comprehensive characterization of the complex dynamics exhibited by the system, and a deeper understanding of the underlying mechanisms governing the TVB-based reservoir’s computational capabilities. Ridge regression, accelerated also by GPUs, is used to extract the predictive capacity from the reservoir states. The results suggest that edge-of-chaosdynamics correspond to enhanced memory and prediction accuracy, supporting the potential of TVB-based reservoirs for brain-inspired machine learning. 001046968 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001046968 536__ $$0G:(EU-Grant)101058516$$aeBRAIN-Health - eBRAIN-Health - Actionable Multilevel Health Data (101058516)$$c101058516$$fHORIZON-INFRA-2021-TECH-01$$x1 001046968 536__ $$0G:(DE-Juel1)JL SMHB-2021-2027$$aJL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)$$cJL SMHB-2021-2027$$x2 001046968 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x3 001046968 588__ $$aDataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de 001046968 650_0 $$aArtificial intelligence 001046968 650_0 $$aComputers 001046968 650_0 $$aApplication software 001046968 650_0 $$aComputer networks 001046968 7001_ $$0P:(DE-Juel1)161462$$aYegenoglu, Alper$$b1 001046968 7001_ $$0P:(DE-Juel1)184894$$aJimenez-Romero, Cristian$$b2$$ufzj 001046968 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b3 001046968 7001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b4 001046968 773__ $$a10.1007/978-3-032-04558-4_52$$nLNCS$$tArtificial Neural Networks and Machine Learning – ICANN 2025 / Senn, Walter (Editor) [https://orcid.org/0000-0003-3622-0497] ; Cham : Springer Nature Switzerland, 2026, Chapter 52 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-032-04557-7=978-3-032-04558-4 ; doi:10.1007/978-3-032-04558-4$$v16068$$y2026 001046968 8564_ $$uhttps://link.springer.com/book/10.1007/978-3-032-04558-4 001046968 8564_ $$uhttps://juser.fz-juelich.de/record/1046968/files/Complexity%20and%20Criticality%20in%20Neuro-Inspired%20Reservoirs.pdf$$yOpenAccess 001046968 909CO $$ooai:juser.fz-juelich.de:1046968$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire 001046968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179447$$aForschungszentrum Jülich$$b0$$kFZJ 001046968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184894$$aForschungszentrum Jülich$$b2$$kFZJ 001046968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b3$$kFZJ 001046968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b4$$kFZJ 001046968 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001046968 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28 001046968 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001046968 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001046968 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-28$$wger 001046968 920__ $$lyes 001046968 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001046968 980__ $$acontrib 001046968 980__ $$aVDB 001046968 980__ $$aUNRESTRICTED 001046968 980__ $$ajournal 001046968 980__ $$acontb 001046968 980__ $$aI:(DE-Juel1)JSC-20090406 001046968 9801_ $$aFullTexts