001     1046968
005     20251021104139.0
020 _ _ |a 978-3-032-04557-7
020 _ _ |a 978-3-032-04558-4 (electronic)
024 7 _ |2 doi
|a 10.1007/978-3-032-04558-4_52
024 7 _ |2 ISSN
|a 0302-9743
024 7 _ |2 ISSN
|a 1611-3349
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-04036
037 _ _ |a FZJ-2025-04036
041 _ _ |a English
082 _ _ |a 006.3
100 1 _ |0 P:(DE-Juel1)179447
|a van der Vlag, Michiel
|b 0
|e Corresponding author
111 2 _ |a 34th International Conference on Artificial Neural Networks
|c Kaunas
|d 2025-09-09 - 2025-09-12
|g ICANN
|w Lithuania
245 _ _ |a Complexity and Criticality in Neuro-Inspired Reservoirs
250 _ _ |a 1st ed. 2026
260 _ _ |a Cham
|b Springer Nature Switzerland
|c 2026
295 1 0 |a [Ebook] Artificial Neural Networks and Machine Learning – ICANN 2025 : 34th International Conference on Artificial Neural Networks, Kaunas, Lithuania, September 9–12, 2025, Proceedings, Part I / Senn, Walter ; Sanguineti, Marcello ; Saudargiene, Ausra ; Tetko, Igor ; Villa, Alessandro E. P. ; Jirsa, Viktor K. ; Bengio, Yoshua 1st ed. 2026, Cham : Springer Nature Switzerland, 2026,
300 _ _ |a 645 - 657
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|m journal
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1760096738_15552
336 7 _ |0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|a Contribution to a book
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 16068
500 _ _ |a This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in "Artificial Neural Networks and Machine Learning – ICANN 2025", and is available online at https://link.springer.com/book/10.1007/978-3-032-04558-4
520 _ _ |a Understanding information propagation and computational capabilities in large-scale brain models is crucial for advancing both neuroscience and neuro-inspired computing. It remains unknown how complexity affects the performance of simulated biological networks in predicting non-linear dynamics. Here, this issue is addressed by integrating reservoir computing, a recurrent neural network architecture, with The Virtual Brain, a whole-brain simulation platform, to create amore neurophysiologically-plausible machine learning framework. Metrics derived from nonlinear dynamics and complexity theory, including the largest Lyapunov exponent, which captures chaotic behavior, Detrended Fluctuation Analysis, which assesses temporal correlations, and the Perturbational Complexity Index, which evaluates the complexity of neural responses, provide a quantitative framework for characterizing cognitive dynamics. Deploying this framework on High Performance Computing enables a thorough exploration of the vast parameter space, utilizing a diverse evaluation framework that assesses simulations through these metrics, implemented on Graphics Processing Units (GPUs). This enables the identification of optimal parameter regimes, a comprehensive characterization of the complex dynamics exhibited by the system, and a deeper understanding of the underlying mechanisms governing the TVB-based reservoir’s computational capabilities. Ridge regression, accelerated also by GPUs, is used to extract the predictive capacity from the reservoir states. The results suggest that edge-of-chaosdynamics correspond to enhanced memory and prediction accuracy, supporting the potential of TVB-based reservoirs for brain-inspired machine learning.
536 _ _ |0 G:(DE-HGF)POF4-5111
|a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|c POF4-511
|f POF IV
|x 0
536 _ _ |0 G:(EU-Grant)101058516
|a eBRAIN-Health - eBRAIN-Health - Actionable Multilevel Health Data (101058516)
|c 101058516
|f HORIZON-INFRA-2021-TECH-01
|x 1
536 _ _ |0 G:(DE-Juel1)JL SMHB-2021-2027
|a JL SMHB - Joint Lab Supercomputing and Modeling for the Human Brain (JL SMHB-2021-2027)
|c JL SMHB-2021-2027
|x 2
536 _ _ |0 G:(DE-Juel1)Helmholtz-SLNS
|a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|c Helmholtz-SLNS
|x 3
588 _ _ |a Dataset connected to CrossRef Book Series, Journals: juser.fz-juelich.de
650 _ 0 |a Artificial intelligence
650 _ 0 |a Computers
650 _ 0 |a Application software
650 _ 0 |a Computer networks
700 1 _ |0 P:(DE-Juel1)161462
|a Yegenoglu, Alper
|b 1
700 1 _ |0 P:(DE-Juel1)184894
|a Jimenez-Romero, Cristian
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)151166
|a Morrison, Abigail
|b 3
700 1 _ |0 P:(DE-Juel1)165859
|a Diaz, Sandra
|b 4
773 _ _ |a 10.1007/978-3-032-04558-4_52
|n LNCS
|t Artificial Neural Networks and Machine Learning – ICANN 2025 / Senn, Walter (Editor) [https://orcid.org/0000-0003-3622-0497] ; Cham : Springer Nature Switzerland, 2026, Chapter 52 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-032-04557-7=978-3-032-04558-4 ; doi:10.1007/978-3-032-04558-4
|v 16068
|y 2026
856 4 _ |u https://link.springer.com/book/10.1007/978-3-032-04558-4
856 4 _ |u https://juser.fz-juelich.de/record/1046968/files/Complexity%20and%20Criticality%20in%20Neuro-Inspired%20Reservoirs.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046968
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)179447
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)184894
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)151166
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165859
|a Forschungszentrum Jülich
|b 4
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-511
|1 G:(DE-HGF)POF4-510
|2 G:(DE-HGF)POF4-500
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-5111
|a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|v Enabling Computational- & Data-Intensive Science and Engineering
|x 0
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2024-12-28
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
|d 2024-12-28
|w ger
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21