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Abstract. Understanding information propagation and computational
capabilities in large-scale brain models is crucial for advancing both neu-
roscience and neuro-inspired computing. It remains unknown how com-
plexity affects the performance of simulated biological networks in pre-
dicting non-linear dynamics. Here, this issue is addressed by integrat-
ing reservoir computing, a recurrent neural network architecture, with
The Virtual Brain, a whole-brain simulation platform, to create a more
neurophysiologically-plausible machine learning framework. Metrics de-
rived from nonlinear dynamics and complexity theory, including the
largest Lyapunov exponent, which captures chaotic behavior, Detrended
Fluctuation Analysis, which assesses temporal correlations, and the Per-
turbational Complexity Index, which evaluates the complexity of neural
responses, provide a quantitative framework for characterizing cognitive
dynamics. Deploying this framework on High Performance Computing
enables a thorough exploration of the vast parameter space, utilizing a di-
verse evaluation framework that assesses simulations through these met-
rics, implemented on Graphics Processing Units (GPUs). This enables
the identification of optimal parameter regimes, a comprehensive charac-
terization of the complex dynamics exhibited by the system, and a deeper
understanding of the underlying mechanisms governing the TVB-based
reservoir’s computational capabilities. Ridge regression, accelerated also
by GPUs, is used to extract the predictive capacity from the reservoir
states. The results suggest that edge-of-chaos dynamics correspond to
enhanced memory and prediction accuracy, supporting the potential of
TVB-based reservoirs for brain-inspired machine learning.

Keywords: Reservoir computing - The Virtual Brain - Information based
metrics.
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1 Introduction

Reservoir computing (RC) [?,?] is a type of recurrent neural network architec-
ture that uses a “reservoir” of interconnected, recurrent, and non-linear nodes
to process sequential or temporal data. The reservoir projects input data into a
high-dimensional state space. A readout layer then maps this space to the de-
sired output. This process leverages the fading memory property, which allows
the model to capture and temporarily store information with decaying character-
istics [?]. From a biological standpoint, RC provides an interpretation of com-
putation in neocortical microcircuits [?]. The superior cognitive achievements
of higher vertebrate brains, such as conscious processing, may result from the
comprehensive utilization of this adaptable neural circuit [19].

An optimal operating regime or a critical point of complexity may support
neural computation, and self-organized criticality (SOC) is a competitive model
for elucidating neural mechanisms [?,?,?,21,4]. SOC and complexity can be quan-
tified using various metrics, such as the Perturbational Complexity Index (PCI),
Detrended Fluctuation Analysis (DFA) to evaluate long-range temporal corre-
lations, and the Lyapunov exponent (LYA) to estimate the rate of divergence
or convergence of neural dynamics. Criticality is marked by the coexistence of
maximal complexity or information richness (PCI) and power-law scaling or
long-range temporal correlations, allowing for optimal information processing
and adaptability in the brain [21,7,2].

It remains unknown how complexity affects the performance of simulated
biological networks in predicting non-linear dynamics, a crucial aspect of under-
standing complex biological systems. Here, we address this issue by investigating
the influence of complexity on the performance of these networks, with a focus
on their ability to predict non-linear dynamics. To investigate the differences
in optimal performance underlying active and resting states, two distinct brain
models are implemented, acting as nodes of the reservoir network. Results show
that these models exhibit distinct optimal performance regimes. One model ex-
cels in active states with high complexity, strong long-range correlations, and
low chaos, while the other model performs optimally in resting states with high
complexity, weak correlations, and high chaos.

2 Materials and Methods

RateML’s [?,?,?] High Performance Computing (HPC) version of The Virtual
Brain [18] (TVB) simulator is utilized to set up a grid of mean-field models,
which provides for vast parallelization of the model’s parametrization on multiple
Graphics Processing Units (GPU). The process involves four key steps: injecting
dynamics, training with ridge regression, running a simulation with the acquired
weights, and prediction. To examine the reservoir’s learning capacity, it is trained
to predict the Lorenz dynamics [12], described by the following equations:

dx dy dz
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The dynamics are injected into the TVB network. A neuro-realistic connec-
tome of 96 nodes, serving as the interconnect for the TVB simulation, is utilized
[?]. Nodes 10, 17, and 30 are selected as dedicated input nodes for this task,
which are anatomically part of the frontal lobe and orbitofrontal cortex, sit-
uated close to the eyes (lateral orbitofrontal, pars orbitalis, and frontal pole).
Nodes 15, 20, and 22 are selected as dedicated output nodes and form the layer
that is trained to represent the desired dynamic, and are chosen from regions
closest and most likely connected to the motor cortex (precentral, paracentral,
and postcentral).

The learning phase runs for 625 time-steps, including a 125-time-step initial-
ization phase, to stabilize the reservoir’s dynamics and determine the weights.
A teacher signal is used to train the reservoir to predict future states. During
the training phase, the output nodes are fed with a teacher signal, which is a
temporally advanced copy of the input signal. This means that the teacher signal
provides the reservoir with a preview of the next state, allowing it to learn the
temporal relationships between the current and next states.

Tikhonov Ridge regression [6] is employed to capture the system’s dynam-
ics and compute the weights necessary for prediction. After the new weights
are acquired, a second simulation is initialized implementing these weights. This
simulation is spun up for 375 steps using the Lorenz dynamics with different ini-
tial conditions. The resulting reservoir state is used to make an overall or macro
prediction over 250 time-steps. The described method is similar to work from
Tolle et al. [22]. The macro prediction is made after the second TVB simulation
and reflects the overall quality of the fully trained reservoir.

In contrast to the macro prediction, micro predictions are made to enhance
the dynamics during the second TVB simulation. These micro predictions are
made with shorter intermediate simulation results, as shown in fig. 1.
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Fig. 1. Partial prediction for a position of the reservoir. The prediction (red) follows if
the reservoir is in the state at the position 40 to 60 of the reservoir (blue). The teacher
signal (green) is a temporally advanced copy the input signal and is used to create the
temporal relation of the regression fit.

These intermediate micro predictions are then injected back into the second
TVB simulation amplifying the current dynamics. The partial prediction is of
the size of the trainer-teacher-delay, meaning that the next injection coincides
with the correct phase of the reservoir. The resulting prediction is upsampled
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to match the time basis on the GPU using spline interpolation. After obtaining
the macro predictions, the mean squared error (MSE) with the true signal is
calculated. The computations use a normalized mean squared error metric with
an exponential decay weighting.

2.1 Mean-field neural mass models

The Montbrio-Pazo-Roxin (MPR) model [13] uses the Ott-Antonsen reduc-
tion [15] to describe the dynamics of an infinite ensemble of all-to-all coupled
quadratic integrate-and-fire (QIF) neurons. The model has two state variables, r
and V, representing the firing rate and average membrane potential of the QIF
neurons. The Lorentz dynamics are injected on the first state variable, r.

The MPR model can exhibit synchronized and desynchronized states of activ-
ity, corresponding to resting and active states of brain activity [13]. The resting
state is characterized by spontaneous fluctuations in neural activity, with mod-
erate noise contributing to low-frequency fluctuations and irregular neural firing
[4]. The active state corresponds to brain activity elicited in response to per-
forming a specific cognitive or motor task. The model’s parameters, including
the synaptic weight J, feedback scaling parameter 7, and external current I,
can be adjusted to create an effective excitatory-inhibitory dynamic and simu-
late adaptation-like behavior [13]. The parameter 7 determines the strength of
the self-feedback loop, while J controls the strength of the synaptic inputs. The
external current I represents the level of external input applied to each neuron,
with higher values corresponding to activity observed during cognitive tasks.

The Larter-Breakspear (LB) model [9] simulates the collective dynamics of
excitatory and inhibitory populations within a cortical column, building upon
classical Wilson-Cowan models [24]. The model incorporates nonlinear synaptic
interactions, NMDA receptor dynamics, and intrinsic noise, enabling the study
of complex brain activity patterns and criticality. The LB model’s three state
variables are V' (mean membrane potential of excitatory pyramidal neurons),
W (average number of open potassium ion channels) and Z (mean membrane
potential of inhibitory interneurons) [5]. The Lorentz dynamics will be injected
on the first state variable, V. The model can be tuned to simulate active and
resting state brain dynamics by modulating the excitatory-to-excitatory synap-
tic strength (aee), the mean threshold potential for excitatory neurons (Vr), and
ratio of NMDA to AMPA receptors (rnmda). Decreasing ae. or increasing (Vi)
can lead to a decrease in the model’s sensitivity to external inputs, simulat-
ing a more inactive state. Adjusting rnmg. can modulate the model’s synaptic
plasticity, allowing it to exhibit more stable, inactive-like dynamics.

2.2 Neural complexity

In the context of the brain, complexity refers to the intricate and dynamic orga-
nization of neural networks, encompassing the structure, function, and interac-
tions of neurons and synapses. We select three measures to study the dynamics
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Table 1. Parameter settings for resting and cognitive task states in the MPR and
Breakspear TVB models

Symbol Description Resting State|Active State
Montbrié-Pazé-Roxin
1 External Current -0.5 to 0.0 2.0 to 4.0
J Mean Synaptic Weight 12 to 14 15 to 16
n Feedback Scaling -4.6 -3.5 to -4.0
Larter-Breakspear
ace |Excitatory-to-excitatory synaptic strength 0.01 0.5
Vr Threshold potential excitatory neurons —30 —60mV
Tnmda Ratio of NMDA to AMPA receptors 0.1 1.5

of learning systems and represent the brain’s complexity and criticality, as de-
scribed in the following.

Perturbational Complexity Index (PCI) The PCI, a clinical metric for
discriminating levels of consciousness, assesses differentiation and integration
within brain networks [2,3,1]. It quantifies the complexity of averaged evoked
Electroencephalogram (EEG) signals by targeting the spatiotemporal differen-
tiation of deterministic and causal components [2]. The PCI is derived using
the Lempel-Ziv complexity (LZc), which estimates Kolmogorov complexity and
assesses the diversity of patterns within a signal [23,10]. The PCI is calculated
as the ratio between the LZc and the source entropy H [2]:

PCI(s)=LZ(s)/H(s) (2)

A low PCI indicates reduced interaction between cortical areas, while a high
PCI is observed when the initial perturbation propagates to a broad array of
integrated areas, each responding distinctively [2]. The moment of perturbation
is set to the moment of injection of the Lorentz dynamics into the reservoir.

The module from [3] has been used to implement the PCI on the GPU. The
GPU-kernel parallelizes the computation of PCI for each unique TVB simula-
tion, resulting in significant speedup compared to a serial implementation. The
CUDA kernel calculates the PCI for a set of trials and sources using binarized
data. The kernel includes: signal pre-processing, binarization, sorting, complexity
computation, and normalization. Pre-processing involves performing centering,
standardization, and binarization based on a given percentile threshold. The bi-
nary matrix is then sorted by rows based on the sum of elements in each row,
prioritizing sources contributing more significantly to the signal. The LZc of the
sorted binary matrix is computed converting binary rows into sequences of bits
and identifying recurring patterns. After, the entropy of the binary matrix for
normalization based on probabilities (p_1) and (p_0) is determined. The PCI
was normalized using Lempel-Ziv complexity divided by signal entropy, improv-
ing reproducibility by reducing sensitivity to amplitude for instance. The results
of the PCI are plotted in fig. 2 for MBR and in fig. 3 for LB.
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Detrended Fluctuation Analysis Fractal dimensions are valuable tools for
quantifying the complexity and self-similarity in neural systems [11]. In neuro-
science, Detrended Fluctuation Analysis (DFA) has been applied to determine
fractal dimension and study the temporal dynamics of neural signals [8]. DFA in-
volves several steps to analyze the correlation properties of a time-series, includ-
ing removing local trends, calculating the root-mean-square (RMS) fluctuations,
and determining the scaling exponent («) through a power-law relationship. The
« value, also known as the Hurst exponent, measures the auto-correlation struc-
ture of a time series and ranges between 0 and 1 [7,8]. A Hurst exponent greater
than 0.5 suggests persistent correlations, while a value less than 0.5 indicates
anti-persistent correlations. The DFA is commonly expressed by the following
formula [16]:

N
Fn) = |+ 3 )y ) 3)

i=1
Where F(n) is the RMS fluctuation for box size n, N is the total number of data
points, y(¢) is the time series data at point i, ya¢(¢) is the best-fit polynomial
within a specific window at point. The scaling exponent « is determined by
analyzing the relationship between F'(n) and the box size n through a power-
law relationship: F'(n) o« n®. The final output, the scaling exponent («), provides
insight into the fractal properties of the data, indicating whether the time series

is more random or correlated in nature.

The Nolds [17] Python library, which includes the DFA, is used as a ba-
sis to implement this algorithm on the GPU. The GPU kernel implements
two-dimensional parallelism for each unique TVB simulation and its regions.
Each thread processes one simulation-region pair, dividing the data into non-
overlapping windows and calculating the RMS fluctuations. The kernel computes
the logarithm of both the fluctuation and the window size, using these values
to calculate the scaling exponent («), which characterizes the complexity of the
time series. The results of the DFA are plotted in fig. 2 for MBR and in fig. 3 for
LB. DFA exponents were estimated via linear regression on log—log fluctuation
vs. window size and reported per region without further normalization, as the
exponent is inherently dimensionless and amplitude-independent.

Chaoticity The largest Lyapunov exponent (LYA) is used to quantify the in-
trinsic chaoticity of a system, denoting the rate at which initially similar tra-
jectories in the system’s phase space diverge [14,20]. A positive LYA indicates
chaotic behavior, while a negative exponent suggests periodic or stable behavior
[14]. The magnitude of the LYA correlates with the degree of chaos in the system
[20]. The Python library Nolds [17] is used to implement the LYA on the GPU
and is expressed by the following formula:

(4)
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Where z; is the delay vector at time 4,f(x;) is the mapping of x; to the next
point in the trajectory, as part of the time-delay embedding process.

The GPU kernel implements two-dimensional parallelism for each unique
TVB simulation and its regions. It uses time-delay embedding to transform the
input time series into a high-dimensional space, capturing the system’s dynamics.
The resulting matrix stores the estimated LYA for each region in each simulation.
The results of the LYA are plotted in fig. 2 for MBR and in fig. 3 for LB.

3 Results

3.1 Parameters Space Exploration
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Fig. 2. Complexity (PCIs), fractality (DFAs), chaoticity (LYAs) and mean squared
error of the fit (MSEs) for the Montbrié-Paz6-Roxin model as functions of the external
current (I), mean synaptic weight (J) and the feedback scaling (7).

For the Montbrio-Paz6-Roxin model, the results of sweeping the external current
1, feedback scaling 1, and mean synaptic feedback J parameters while learning
to predict the Lorentz dynamics (??) are shown in fig. 2. A clear separation
between lower and upper tetrahedrons is observed for the DFA and LYA metrics
and MSE. The plane separates the higher DFA values from the lower LYA values.
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A near critical regime is characterized by lower values of LYA and persistent
correlations by higher than .5 values for DFA. Thus, optimal learning conditions
seem to appear around the separation, where also an area of lower MSE values
is found.

Overall, the system remains in a chaotic regime (A > 0) but within a con-
trolled range (0.2 — 0.5), indicating persistent sensitivity to initial conditions
without extreme chaos. A DFA exponent greater than 0.5 suggests strong long-
range correlations, indicating persistent memory, whereas a DFA exponent less
than 0.5 indicates anti-persistent behavior, characterized by a fast decay of cor-
relations. The PCI exhibits a more scattered distribution, with high values ap-
pearing throughout the parameter space. This suggests that complexity is a
localized phenomenon, rather than a global trend. Notably, the results indicate
that complexity is not solely tied to chaotic behavior or long memory, revealing
a more nuanced relationship between these concepts.
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Fig. 3. Complexity (PClIs), fractality (DFAs), chaoticity (LYAs) and mean squared er-
ror of the fit (MSEs) for the Larter-Breakspear model as functions of the excitatory-to-
excitatory synaptic strength (ac.), the mean threshold potential for excitatory neurons
(Vr), and the ratio of NMDA to AMPA receptors (rnmda)-

The analysis of the Larter-Breakspear model are shown in fig. 3 for a pa-
rameter sweep of the excitatory-to-excitatory synaptic strength (ae.), the mean
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threshold potential for excitatory neurons (Vr), and ratio of NMDA to AMPA
receptors (Tnmda) is shown in fig. 3. The PCI is scattered, indicating a complex
and nonlinear relationship between the model’s parameters and its dynamics. A
clear relationship is observed between the adaptation current parameter Vr and
the DFA exponent, with higher V1 values corresponding to higher DFA values,
which vary from 0.0 to 1.0. Similarly, higher Vi values are associated with lower
LYA, which range from 0.15 to 0.35. The analysis of the MSE reveals that it is
overall low, indicating that it captures the underlying dynamics of the system
reasonably well. However, an interesting observation is that the MSE starts to
rise when LYA is low and DFA exponent is high, when V7 is higher and aee is
at its maximum. Just before the rise in MSE, there is a small area where high
DFA and low LYA overlap. A higher threshold voltage Vr likely increases neu-
ron excitability, making dynamics more stable. Higher a., (excitatory-excitatory
strength) could drive strong recurrent excitation, leading to an overly stable
regime. This suggests a narrow transition where the system has strong memory
(DFA high) but is still near marginal stability (low LYA), possibly close to a
critical-like regime before becoming too stable.

3.2 Information Distribution

The distributions of MSE for active and resting states are shown in the left
panels (A, C) of fig. 4, and are based on predefined parameter masks. The right
panels (B, D) show the distributions of the MSE based on different metric masks,
categorizing simulations into high and low values of PCI, DFA, and LYA. The
parameter masks are based on the subset of parameters defined in 7?7 to identify
the predefined regions of the MSE space that coincide with the active or resting
state of the model. The metrics masks are a combination of high/low PCI, DFA
and LYA as shown in the legend of fig. 4. The threshold values for the PCI
(= 1.0) and LYA (= 0.3) are based on the median of its values and the DFA
(0.5) is based on the aforementioned value from literature.

The distribution of MSE values in fig. 4 reveals that the MBR model achieves
its best fits more frequently when in an active state (A). In contrast, the LB
model performs optimally when in a resting state (C). Furthermore, the metrics-
based masks indicate that the MBR model prefers lower complexity for its best
fits, when DFA is higher, indicating strong long-range correlations and LYA is
lower, indicating operation at criticality (B), whereas the LB model favors higher
complexity, when DFA is lower and LYA is higher (D), indicating less correlated
fluctuations and more pronounced chaotic dynamics. This disparity likely arises
from the distinct intrinsic dynamical properties of the two models, with the MBR
model suited to active states with sustained, self-organized neural activity, and
the LB model favoring resting states with spontaneous fluctuations and higher
unpredictability.
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Fig. 4. Distribution of the Mean Squared Error fitting the predicted Lorentz Dynamics
for the Montbri6-Pazo-Roxin (A,B) and the Larter-Breakspear model (C,D). The dis-
tributions are based on predefined (A, C) parameter and metrics-based (B, D) masks.

4 Conclusion/Discussion

The reservoir computer framework implemented in TVB offers a powerful tool
for exploring learning dynamics in complex systems. By considering TVB’s inter-
connected nodes as the elements of a reservoir, reservoir learning is intersected
with brain simulation and analysis. Making use of metrics like Lyapunov ex-
ponents, Detrended Fluctuation Analysis, and the Perturbational Complexity
Index, different dynamical regimes can be characterized and the effect of these
metrics on machine learning systems can be studied. The framework is available
at https://github.com/DeLaVlag/TVB-Reservoir.

The two brain models exhibit distinct behaviors in terms of their optimal
performance regimes. The MBR model achieves its best fits when in an ac-
tive state, characterized by high complexity, strong long-range correlations, and
low chaos, whereas the LB model achieves this in a resting state, marked by
high complexity, weak long-range correlations, and high chaos. Interestingly, the
MBR model prefers lower complexity for its best fits, when DFA is higher, indi-
cating strong long-range correlations and LYA is lower, indicating operation at
criticality. Whereas the LB model favors higher complexity, when DFA is lower
and LYA is higher, indicating less correlated fluctuations and more pronounced
chaotic dynamics.


https://github.com/DeLaVlag/TVB-Reservoir

Complexity and Criticality in Neuro-Inspired Reservoirs 11

Acknowledgments. We thank Wouter Klijn, Jennifer S. Goldman, Giulia De Bo-
nis, Pier Stanislao Paolucci and Cosimo Lupo for their significant contributions to the
discussion on TVB-Reservoir’s architecture, implementation, and metrics. Their exper-
tise and feedback have been invaluable in shaping this paper, and we appreciate their
time and collaboration. The research leading to these results has received funding from
the European Union’s Horizon 2020 Framework Program for Research and Innovation
under the Grant Agreement 101058516 (e BRAIN-Health). This research was also sup-
ported by the Helmholtz Joint Lab “Supercomputing and Modeling for the Human
Brain”. Open Access publication was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)—491111487.

Disclosure of Interests. The authors declare no conflicts of interest.
References

1. Arsiwalla, X.D., Verschure, P.: Measuring the complexity of consciousness. Front.
Neurosci. 12(JUN), 1-6 (2018). https://doi.org/10.3389/fnins.2018.00424

2. Casali, A.G.e.a.: A theoretically based index of consciousness independent of
sensory processing and behavior. Science Translational Medicine 5(198) (2013).
https://doi.org/10.1126/scitranslmed.3006294

3. Casarotto, S.e.a.: Stratification of unresponsive patients by an independently
validated index of brain complexity. Ann Neurol 80(5), 718-729 (Nov 2016).
https://doi.org/10.1002/ana.24779

4. Deco, G.e.a.: Emerging concepts for the dynamical organization of resting-state
activity in the brain. Nature Reviews Neuroscience 12(1), 43-56 (2011)

5. Gaglioti, G., Nieus, T.R., Massimini, M., Sarasso, S.: Investigating the Impact of
Local Manipulations on Spontaneous and Evoked Brain Complexity Indices: A
Large-Scale Computational Model. Applied Sciences (Switzerland) 14(2) (2024).
https://doi.org/10.3390/app14020890

6. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12(1), 55-67 (1970)

7. Hurst, H.E.: Long-term storage capacity of reservoirs. Transactions of the American
Society of Civil Engineers 116, 770-799 (1951)

8. Thlen, E.A.: Introduction to multifractal detrended fluctuation analysis in matlab.
Frontiers in Physiology 3 (2012). https://doi.org/10.3389/fphys.2012.00141

9. Larter, e.a.: A coupled ordinary differential equation lattice model for the simula-
tion of epileptic seizures. Chaos 9(3), 795 (1999)

10. Lempel, A.; Ziv, J.: On the complexity of finite sequences. IEEE Transactions on
Information Theory 22(1), 75-81 (1976)

11. Linkenkaer-Hansen, K.e.a.: Long-range temporal correlations and scaling behavior
in human brain oscillations. The Journal of neuroscience 21(4), 1370-1377 (2001).
https://doi.org/10.1523/INEUROSCI.21-04-01370.2001

12. Lorenz, E.N.: Deterministic non-periodic flow. Journal of the Atmospheric Sciences
20(2), 130-141 (1963)

13. Montbrié, E., Paz6, D., Roxin, A.: Macroscopic description for networks of spik-
ing neurons. Physical Review X 5(2), 1-15 (2015). https://doi.org/10.1103/
PhysRevX.5.021028

14. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press (1993)

15. Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally
coupled oscillators. Chaos (Woodbury, N.Y.) 18(3), 37113 (sep 2008). https://
doi.org/10.1063/1.2930766


https://doi.org/10.3389/fnins.2018.00424
https://doi.org/10.3389/fnins.2018.00424
https://doi.org/10.1126/scitranslmed.3006294
https://doi.org/10.1126/scitranslmed.3006294
https://doi.org/10.1002/ana.24779
https://doi.org/10.1002/ana.24779
https://doi.org/10.3390/app14020890
https://doi.org/10.3390/app14020890
https://doi.org/10.3389/fphys.2012.00141
https://doi.org/10.3389/fphys.2012.00141
https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001
https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1103/PhysRevX.5.021028
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766
https://doi.org/10.1063/1.2930766

12

16.

17.

18.

19.

20.

21.

22.

23.

24.

Michiel van der Vlag et al.

Peng, C.K.e.a.: Mosaic organization of dna nucleotides. Physical Review E 49(2),
1685 (1995)

Santos, M.C.: nolds: A python library for nonlinear time series analysis (2017).
https://doi.org/10.5281/zenodo.1038497

Sanzleon, P.e.a.: The virtual brain: A simulator of primate brain network dynam-
ics. Front. Neuroinform. 7(MAY) (2013). https://doi.org/10.3389/fninf.2013.
00010

Seoane, L.F.: Evolutionary aspects of reservoir computing. Philosophical Trans-
actions of the Royal Society B: Biological Sciences 374(1774) (2019). https:
//doi.org/10.1098/RSTB.2018.0377

Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering. Westview Press (2014)

Toker, D.e.a.: Consciousness is supported by near-critical slow cortical electrody-
namics. Proceedings of the National Academy of Sciences of the United States of
America 119(7), 1-12 (2022). https://doi.org/10.1073/pnas.2024455119
Tolle, H.M., Luppi, A.L, Seth, A K., Mediano, P.A.M.: Evolving reservoir comput-
ers reveals bidirectional coupling between predictive power and emergent dynamics
(2024), http://arxiv.org/abs/2406.19201

Vitanyi, P.M., Li, M.: An Introduction to Kolmogorov Complexity and its Appli-
cations, vol. 34. Springer Heidelberg (1997)

Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized pop-
ulations of model neurons. Biophysical Journal 12(1), 1-24 (1972)


https://doi.org/10.5281/zenodo.1038497
https://doi.org/10.5281/zenodo.1038497
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.3389/fninf.2013.00010
https://doi.org/10.1098/RSTB.2018.0377
https://doi.org/10.1098/RSTB.2018.0377
https://doi.org/10.1098/RSTB.2018.0377
https://doi.org/10.1098/RSTB.2018.0377
https://doi.org/10.1073/pnas.2024455119
https://doi.org/10.1073/pnas.2024455119
http://arxiv.org/abs/2406.19201

	Complexity and Criticality in Neuro-Inspired Reservoirs

