001046970 001__ 1046970
001046970 005__ 20260107202515.0
001046970 0247_ $$2doi$$a10.1016/j.actamat.2025.121423
001046970 0247_ $$2ISSN$$a1359-6454
001046970 0247_ $$2ISSN$$a1873-2453
001046970 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04038
001046970 037__ $$aFZJ-2025-04038
001046970 082__ $$a670
001046970 1001_ $$00000-0002-4482-658X$$aTurnali, Ahmet$$b0$$eCorresponding author
001046970 245__ $$aHarnessing additive manufacturing-induced microstructure and solute heterogeneities for the design of precipitation-strengthened alloys
001046970 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001046970 3367_ $$2DRIVER$$aarticle
001046970 3367_ $$2DataCite$$aOutput Types/Journal article
001046970 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767788316_8541
001046970 3367_ $$2BibTeX$$aARTICLE
001046970 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046970 3367_ $$00$$2EndNote$$aJournal Article
001046970 520__ $$aSolute enrichment at lattice defects is a well-established phenomenon for promoting phase transformations. Metal additive manufacturing (AM) inherently enables this by promoting cellular structures during solidification and thermal cycling. Cellular structures exhibit compositional and lattice defect density variations between cell cores and boundaries, leading to site-specific phase-transformation (e.g., precipitation) behavior that can be selectively activated by post-AM heat treatments. Despite this potential, cellular structures have largely been treated as byproducts rather than intentionally exploited alloy design features. Guided by these insights, we designed a model Al10.5Co25Fe39.5Ni25 multi-principal element alloy to intentionally control composition and thus, precipitation driving forces across cellular structures. The alloy composition was computationally selected to promote segregation of a fast-diffusing, precipitate-forming element into the interdendritic regions during solidification in the laser powder bed fusion (PBF-LB/M) process. This segregation aligned with dislocation walls at cell boundaries, creating a “pre-conditioned” state with enhanced chemical driving force and reduced nucleation barrier for precipitation. This targeted design enabled site-specific nucleation and growth of precipitates at cell boundaries during aging. Comprehensive multiscale characterization complemented by in situ synchrotron X-ray diffraction confirmed that cellular structures accelerated precipitation, increased precipitate volume fraction and refined the precipitate size compared to the reference state where cellular structures were removed via solution annealing before aging. As a result, the alloy achieved enhanced yield strength (122.2 % increase), and improved tensile properties compared to the reference state. These findings demonstrate the potential of harnessing cellular structures as functional components to control microstructure evolution in precipitation strengthened AM alloys.
001046970 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001046970 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x1
001046970 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046970 7001_ $$0P:(DE-HGF)0$$aHariharan, Avinash$$b1
001046970 7001_ $$00000-0003-2870-9305$$aPolatidis, Efthymios$$b2
001046970 7001_ $$0P:(DE-Juel1)190840$$aPeter, Nicolas J.$$b3$$ufzj
001046970 7001_ $$0P:(DE-HGF)0$$aGehlmann, Jaqueline$$b4
001046970 7001_ $$0P:(DE-HGF)0$$aSofras, Christos$$b5
001046970 7001_ $$00000-0003-2691-8111$$aHegedüs, Zoltan$$b6
001046970 7001_ $$00000-0002-7205-9816$$aSayk, Lennart$$b7
001046970 7001_ $$0P:(DE-Juel1)194507$$aAllam, Tarek$$b8
001046970 7001_ $$00000-0002-7675-6547$$aSchleifenbaum, Johannes Henrich$$b9
001046970 7001_ $$00000-0002-5135-8980$$aHaase, Christian$$b10
001046970 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2025.121423$$gVol. 298, p. 121423 -$$p121423$$tActa materialia$$v298$$x1359-6454$$y2025
001046970 8564_ $$uhttps://juser.fz-juelich.de/record/1046970/files/1-s2.0-S1359645425007098-main.pdf$$yOpenAccess
001046970 909CO $$ooai:juser.fz-juelich.de:1046970$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001046970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190840$$aForschungszentrum Jülich$$b3$$kFZJ
001046970 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194507$$aForschungszentrum Jülich$$b8$$kFZJ
001046970 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001046970 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x1
001046970 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2022$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046970 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2022$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
001046970 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
001046970 920__ $$lyes
001046970 9201_ $$0I:(DE-Juel1)IMD-1-20101013$$kIMD-1$$lWerkstoffstruktur und -eigenschaften$$x0
001046970 980__ $$ajournal
001046970 980__ $$aVDB
001046970 980__ $$aUNRESTRICTED
001046970 980__ $$aI:(DE-Juel1)IMD-1-20101013
001046970 9801_ $$aFullTexts