001046971 001__ 1046971
001046971 005__ 20260107202515.0
001046971 0247_ $$2doi$$a10.1016/j.jmrt.2025.06.164
001046971 0247_ $$2ISSN$$a2238-7854
001046971 0247_ $$2ISSN$$a2214-0697
001046971 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04039
001046971 037__ $$aFZJ-2025-04039
001046971 082__ $$a670
001046971 1001_ $$0P:(DE-HGF)0$$aHamada, Atef$$b0$$eCorresponding author
001046971 245__ $$aFast heating annealing of V-microalloyed TWIP steel: Pathway to ultrafine grains and enhanced mechanical performance
001046971 260__ $$aRio de Janeiro$$bElsevier$$c2025
001046971 3367_ $$2DRIVER$$aarticle
001046971 3367_ $$2DataCite$$aOutput Types/Journal article
001046971 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767788174_8146
001046971 3367_ $$2BibTeX$$aARTICLE
001046971 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046971 3367_ $$00$$2EndNote$$aJournal Article
001046971 520__ $$aThis study explores the effect of fast heating annealing (FHA) on the microstructure and mechanical properties of V-microalloyed high-Mn TWIP steel. Cold-rolled sheets were subjected to FA cycles at a heating rate of 200 °C/s over a temperature range of 700–900 °C for 30 s. The microstructures achieved through FHA were characterized using electron backscatter diffraction (EBSD), while mechanical performance was evaluated through uniaxial tensile testing and physically based modeling.FHA at lower temperatures (700–800 °C) promoted partially recrystallized structures, while fully recrystallized ultrafine-grained microstructures were obtained at 850–900 °C. The optimized structure achieved at 850 °C showcased an exceptional strength–ductility balance, with a yield strength of 415 MPa, tensile strength of 850 MPa, and elongation of 60 %, resulting in a high UTS × TE product of 50700 MPa·%. Fractographic analysis revealed ductile failure dominated by dimple formation, with voids nucleated at non-metallic inclusions.Inclusion classification and statistical analysis further identified Al2O3–Mn(S,Se) as the most dominant inclusion type, with complex multiphase clusters also observed, indicating their role in damage initiation. The applied mechanistic modeling and strain-hardening analysis confirmed that dynamic Hall–Petch strengthening, driven by mechanical twinning and grain refinement, significantly enhanced strain hardening and delayed plastic deformation instability.These findings demonstrate that FHA offers a viable, time-efficient processing strategy for tailoring microstructure and optimizing the mechanical performance of high-Mn TWIP steels through controlled recrystallization, twin activation, and precipitation strengthening.
001046971 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001046971 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046971 7001_ $$0P:(DE-HGF)0$$aKhosravifard, Ali$$b1
001046971 7001_ $$0P:(DE-HGF)0$$aAlatarvas, Tuomas$$b2
001046971 7001_ $$00000-0001-8955-105X$$aJaskari, Matias$$b3
001046971 7001_ $$0P:(DE-HGF)0$$aAbd-Elaziem, Walaa$$b4
001046971 7001_ $$0P:(DE-Juel1)194507$$aAllam, Tarek$$b5
001046971 7001_ $$00000-0002-4309-4786$$aJärvenpää, Antti$$b6
001046971 773__ $$0PERI:(DE-600)2732709-7$$a10.1016/j.jmrt.2025.06.164$$gVol. 37, p. 2449 - 2462$$p2449 - 2462$$tJournal of materials research and technology$$v37$$x2238-7854$$y2025
001046971 8564_ $$uhttps://juser.fz-juelich.de/record/1046971/files/1-s2.0-S2238785425015868-main.pdf$$yOpenAccess
001046971 909CO $$ooai:juser.fz-juelich.de:1046971$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001046971 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194507$$aForschungszentrum Jülich$$b5$$kFZJ
001046971 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001046971 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER RES TECHNOL : 2022$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-01T16:30:52Z
001046971 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-01T16:30:52Z
001046971 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046971 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-01T16:30:52Z
001046971 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER RES TECHNOL : 2022$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001046971 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001046971 920__ $$lno
001046971 9201_ $$0I:(DE-Juel1)IMD-1-20101013$$kIMD-1$$lWerkstoffstruktur und -eigenschaften$$x0
001046971 980__ $$ajournal
001046971 980__ $$aVDB
001046971 980__ $$aUNRESTRICTED
001046971 980__ $$aI:(DE-Juel1)IMD-1-20101013
001046971 9801_ $$aFullTexts