001     1046971
005     20260107202515.0
024 7 _ |a 10.1016/j.jmrt.2025.06.164
|2 doi
024 7 _ |a 2238-7854
|2 ISSN
024 7 _ |a 2214-0697
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04039
|2 datacite_doi
037 _ _ |a FZJ-2025-04039
082 _ _ |a 670
100 1 _ |a Hamada, Atef
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Fast heating annealing of V-microalloyed TWIP steel: Pathway to ultrafine grains and enhanced mechanical performance
260 _ _ |a Rio de Janeiro
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767788174_8146
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study explores the effect of fast heating annealing (FHA) on the microstructure and mechanical properties of V-microalloyed high-Mn TWIP steel. Cold-rolled sheets were subjected to FA cycles at a heating rate of 200 °C/s over a temperature range of 700–900 °C for 30 s. The microstructures achieved through FHA were characterized using electron backscatter diffraction (EBSD), while mechanical performance was evaluated through uniaxial tensile testing and physically based modeling.FHA at lower temperatures (700–800 °C) promoted partially recrystallized structures, while fully recrystallized ultrafine-grained microstructures were obtained at 850–900 °C. The optimized structure achieved at 850 °C showcased an exceptional strength–ductility balance, with a yield strength of 415 MPa, tensile strength of 850 MPa, and elongation of 60 %, resulting in a high UTS × TE product of 50700 MPa·%. Fractographic analysis revealed ductile failure dominated by dimple formation, with voids nucleated at non-metallic inclusions.Inclusion classification and statistical analysis further identified Al2O3–Mn(S,Se) as the most dominant inclusion type, with complex multiphase clusters also observed, indicating their role in damage initiation. The applied mechanistic modeling and strain-hardening analysis confirmed that dynamic Hall–Petch strengthening, driven by mechanical twinning and grain refinement, significantly enhanced strain hardening and delayed plastic deformation instability.These findings demonstrate that FHA offers a viable, time-efficient processing strategy for tailoring microstructure and optimizing the mechanical performance of high-Mn TWIP steels through controlled recrystallization, twin activation, and precipitation strengthening.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Khosravifard, Ali
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Alatarvas, Tuomas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jaskari, Matias
|0 0000-0001-8955-105X
|b 3
700 1 _ |a Abd-Elaziem, Walaa
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Allam, Tarek
|0 P:(DE-Juel1)194507
|b 5
700 1 _ |a Järvenpää, Antti
|0 0000-0002-4309-4786
|b 6
773 _ _ |a 10.1016/j.jmrt.2025.06.164
|g Vol. 37, p. 2449 - 2462
|0 PERI:(DE-600)2732709-7
|p 2449 - 2462
|t Journal of materials research and technology
|v 37
|y 2025
|x 2238-7854
856 4 _ |u https://juser.fz-juelich.de/record/1046971/files/1-s2.0-S2238785425015868-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046971
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)194507
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER RES TECHNOL : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-01T16:30:52Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-01T16:30:52Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-01T16:30:52Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER RES TECHNOL : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IMD-1-20101013
|k IMD-1
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-1-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21