001     1046973
005     20260106202633.0
024 7 _ |a 10.1016/j.matdes.2025.114072
|2 doi
024 7 _ |a 0264-1275
|2 ISSN
024 7 _ |a 0141-5530
|2 ISSN
024 7 _ |a 0261-3069
|2 ISSN
024 7 _ |a 1873-4197
|2 ISSN
024 7 _ |a 1878-2876
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04041
|2 datacite_doi
037 _ _ |a FZJ-2025-04041
082 _ _ |a 690
100 1 _ |a Hamada, Atef
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Contrasting effects of Si on high-temperature deformation behavior and room-temperature strength in V-microalloyed 10Mn-18Cr stainless steels
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767693237_19537
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Two MnCr stainless steels (0.17C-10Mn-18Cr-xSi-1V-0.25N, wt.%) with varying Si contents (x=0.4 and 2.2 wt. %) were designed with a stacking fault energy of 35 mJ/m2 to activate the TWIP effect. The high-temperature deformation behavior and room-temperature (RT) tensile properties were investigated to explore the impact of Si in both high and RT regimes. The high-temperature behavior of the steels was assessed using hot-rolled plates through compression tests at temperatures ranging from 950 to 1100 ◦C and strain rates from 0.01 to 10 s􀀀 1. Hot deformation processing maps were established to identify the safe and unstable deformation zones. The RT tensile properties were evaluated through uniaxial tensile tests of fast-heating (FH) annealed cold-rolled sheets at temperatures ranging from 800 to 1200 ◦C for 3 min. Microstructural analysis of the hot-rolled and FH annealed structures was conducted using electron backscatter diffraction and laser scanning confocal microscopy, and precipitation was characterized by transmission electron microscopy. The findings demonstrated that MnCr-V steel with higher Si content (2.2 wt.%) had reduced hot-deformation resistance and lower activation energy for deformation (477 kJ/mol) compared to its lower Si counterpart (507 kJ/mol). This can be attributed to the soft ferrite phase within the austenite during elevated temperature tests. Conversely, the RT tensile properties exhibited an opposite trend, with the high Si steel showing increased yield strength (YS) and Ultimate tensile strength (UTS) compared to the low Si steel. This improvement is due to solid solution strengthening from Si, precipitation strengthening from V(C,N) particles, and a fine-grained recrystallized structure resulting from short annealing. For instance, after a FH process at 1000 ◦C for 3 min, the YS, UTS, and total elongation values were 665 MPa, 980 MPa, and 40 %, respectively, for the low Si steel, while the high Si steel achieved values of 715 MPa, 1045 MPa, and 30 %, respectively. Mechanical twinning was evident in both materials.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Khosravifard, Ali
|0 0000-0002-9870-7965
|b 1
700 1 _ |a Elanany, Khaled
|0 0009-0008-3985-0500
|b 2
700 1 _ |a Khedr, Mahmoud
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kisko, Anna
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jaskari, Matias
|0 0000-0001-8955-105X
|b 5
700 1 _ |a Ebied, Saad
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Allam, Tarek
|0 P:(DE-Juel1)194507
|b 7
700 1 _ |a Järvenpää, Antti
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Karjalainen, Pentti
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1016/j.matdes.2025.114072
|g Vol. 254, p. 114072 -
|0 PERI:(DE-600)2015480-X
|p 114072
|t Materials and design
|v 254
|y 2025
|x 0264-1275
856 4 _ |u https://juser.fz-juelich.de/record/1046973/files/1-s2.0-S0264127525004927-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046973
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)194507
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MATER DESIGN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-26T11:03:51Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-26T11:03:51Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MATER DESIGN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IMD-1-20101013
|k IMD-1
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-1-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21