001046974 001__ 1046974
001046974 005__ 20260107202515.0
001046974 0247_ $$2doi$$a10.1016/j.mtadv.2024.100549
001046974 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04042
001046974 037__ $$aFZJ-2025-04042
001046974 082__ $$a600
001046974 1001_ $$0P:(DE-HGF)0$$aTurnali, Ahmet$$b0$$eCorresponding author
001046974 245__ $$aSegregation-guided alloy design via tailored solidification behavior
001046974 260__ $$aAmsterdam$$bElsevier$$c2025
001046974 3367_ $$2DRIVER$$aarticle
001046974 3367_ $$2DataCite$$aOutput Types/Journal article
001046974 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767787850_8010
001046974 3367_ $$2BibTeX$$aARTICLE
001046974 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046974 3367_ $$00$$2EndNote$$aJournal Article
001046974 520__ $$aThis study presents an alloy design perspective guided by elemental segregation during solidification to determine the site-specific chemistry and related local thermodynamic properties of dendritic microstructures. This was accomplished via manipulation of the microsegregation behavior by means of nominal alloy composition and thermal conditions of the solidification processes, including modified cooling rates spanning over six orders of magnitudes using ingot casting, directed energy deposition (DED-LB/M) additive manufacturing (AM) and laser powder bed fusion (PBF-LB/M) AM processes. Our approach was demonstrated by computationally designing a novel AlxCo25Fe(50-x)Ni25 multi-principal element alloy (MPEA) as a model system, employing a combination of CALPHAD, Scheil, and multiphase-field simulations, and by experimentally validating the resulting microstructure evolution. The lower Al content (x = 10.5) was designated to generate a supersaturated single-phase fcc matrix suitable for heat-treatments to trigger local phase transformations. The higher Al content (x = 14.5) was selected to define the size and morphology of dual-phase microstructures by controlling phase nucleation and growth through segregation during solidification. Our results showcased how selective enrichment of the desired elements in interdendritic regions can be employed to induce local phase transformations during solidification or post heat-treatments, while their size can be flexibly controlled by the degree of undercooling during solidification. The suggested segregation-guided design approach can be transferred to other alloy systems, enabling effective tuning of local functional, structural, kinetic, and, as shown in this study, thermodynamic properties of dendritic microstructures by predetermining the nature of the alloy matrix through tailored solidification behavior.
001046974 536__ $$0G:(DE-HGF)POF4-1241$$a1241 - Gas turbines (POF4-124)$$cPOF4-124$$fPOF IV$$x0
001046974 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046974 7001_ $$0P:(DE-HGF)0$$aKibaroglu, Dilay$$b1
001046974 7001_ $$0P:(DE-HGF)0$$aEvers, Nico$$b2
001046974 7001_ $$0P:(DE-HGF)0$$aGehlmann, Jaqueline$$b3
001046974 7001_ $$0P:(DE-HGF)0$$aSayk, Lennart$$b4
001046974 7001_ $$0P:(DE-Juel1)190840$$aPeter, Nicolas J.$$b5$$ufzj
001046974 7001_ $$0P:(DE-HGF)0$$aElsayed, Abdelrahman$$b6
001046974 7001_ $$0P:(DE-HGF)0$$aNoori, Mehdi$$b7
001046974 7001_ $$0P:(DE-Juel1)194507$$aAllam, Tarek$$b8$$ufzj
001046974 7001_ $$0P:(DE-HGF)0$$aSchleifenbaum, Johannes Henrich$$b9
001046974 7001_ $$0P:(DE-HGF)0$$aHaase, Christian$$b10
001046974 773__ $$0PERI:(DE-600)2976374-5$$a10.1016/j.mtadv.2024.100549$$gVol. 25, p. 100549 -$$p100549$$tMaterials today advances$$v25$$x2590-0498$$y2025
001046974 8564_ $$uhttps://juser.fz-juelich.de/record/1046974/files/1-s2.0-S2590049824000869-main.pdf$$yOpenAccess
001046974 909CO $$ooai:juser.fz-juelich.de:1046974$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001046974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190840$$aForschungszentrum Jülich$$b5$$kFZJ
001046974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194507$$aForschungszentrum Jülich$$b8$$kFZJ
001046974 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1241$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
001046974 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001046974 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
001046974 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-21
001046974 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001046974 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-15T06:53:13Z
001046974 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-15T06:53:13Z
001046974 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
001046974 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-21
001046974 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001046974 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046974 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-15T06:53:13Z
001046974 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-21
001046974 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001046974 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001046974 920__ $$lyes
001046974 9201_ $$0I:(DE-Juel1)IMD-1-20101013$$kIMD-1$$lWerkstoffstruktur und -eigenschaften$$x0
001046974 980__ $$ajournal
001046974 980__ $$aVDB
001046974 980__ $$aUNRESTRICTED
001046974 980__ $$aI:(DE-Juel1)IMD-1-20101013
001046974 9801_ $$aFullTexts