001     1046974
005     20260107202515.0
024 7 _ |a 10.1016/j.mtadv.2024.100549
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04042
|2 datacite_doi
037 _ _ |a FZJ-2025-04042
082 _ _ |a 600
100 1 _ |a Turnali, Ahmet
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Segregation-guided alloy design via tailored solidification behavior
260 _ _ |a Amsterdam
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767787850_8010
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study presents an alloy design perspective guided by elemental segregation during solidification to determine the site-specific chemistry and related local thermodynamic properties of dendritic microstructures. This was accomplished via manipulation of the microsegregation behavior by means of nominal alloy composition and thermal conditions of the solidification processes, including modified cooling rates spanning over six orders of magnitudes using ingot casting, directed energy deposition (DED-LB/M) additive manufacturing (AM) and laser powder bed fusion (PBF-LB/M) AM processes. Our approach was demonstrated by computationally designing a novel AlxCo25Fe(50-x)Ni25 multi-principal element alloy (MPEA) as a model system, employing a combination of CALPHAD, Scheil, and multiphase-field simulations, and by experimentally validating the resulting microstructure evolution. The lower Al content (x = 10.5) was designated to generate a supersaturated single-phase fcc matrix suitable for heat-treatments to trigger local phase transformations. The higher Al content (x = 14.5) was selected to define the size and morphology of dual-phase microstructures by controlling phase nucleation and growth through segregation during solidification. Our results showcased how selective enrichment of the desired elements in interdendritic regions can be employed to induce local phase transformations during solidification or post heat-treatments, while their size can be flexibly controlled by the degree of undercooling during solidification. The suggested segregation-guided design approach can be transferred to other alloy systems, enabling effective tuning of local functional, structural, kinetic, and, as shown in this study, thermodynamic properties of dendritic microstructures by predetermining the nature of the alloy matrix through tailored solidification behavior.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kibaroglu, Dilay
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Evers, Nico
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gehlmann, Jaqueline
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sayk, Lennart
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Peter, Nicolas J.
|0 P:(DE-Juel1)190840
|b 5
|u fzj
700 1 _ |a Elsayed, Abdelrahman
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Noori, Mehdi
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Allam, Tarek
|0 P:(DE-Juel1)194507
|b 8
|u fzj
700 1 _ |a Schleifenbaum, Johannes Henrich
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Haase, Christian
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.mtadv.2024.100549
|g Vol. 25, p. 100549 -
|0 PERI:(DE-600)2976374-5
|p 100549
|t Materials today advances
|v 25
|y 2025
|x 2590-0498
856 4 _ |u https://juser.fz-juelich.de/record/1046974/files/1-s2.0-S2590049824000869-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046974
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)190840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)194507
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-15T06:53:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-15T06:53:13Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-15T06:53:13Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-1-20101013
|k IMD-1
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-1-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21