001     1046975
005     20260107202515.0
024 7 _ |a 10.1016/j.prostr.2025.06.083
|2 doi
024 7 _ |a 10.34734/FZJ-2025-04043
|2 datacite_doi
037 _ _ |a FZJ-2025-04043
082 _ _ |a 600
100 1 _ |a Hamada, Atef
|0 P:(DE-Juel1)201323
|b 0
|e Corresponding author
245 _ _ |a Comparative Study of Fatigue Behavior and Microstructural Evolution in As-Built and Heat-Treated Additively Manufactured 316L Stainless Steel
260 _ _ |a Amsterdam
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767787590_8010
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study investigates the influence of heat treatment (HT) at 900 °C on the fatigue resistance of 316L stainless steel fabricated through selective laser melting (SLM). Fully reversed, force-controlled fatigue tests were conducted on both as-built (AB) and HTed specimens to assess their cyclic deformation behavior and fatigue life. The fatigue fracture mechanisms were analyzed through detailed microstructural characterization using secondary electron imaging in a scanning electron microscope (SEM) and laser scanning confocal microscope LSCM. Results show that the HT 316L exhibited improved fatigue resistance and a longer fatigue life compared to the AB 316L. Fatigue cracking along dendritic columnar grains and the formation of slip bands were identified as key microstructural features in both AB and HT materials. In the AB material, the columnar dendritic grains and cellular substructure appear to create weak points at grain boundaries, facilitating fatigue crack initiation due to localized strain in persistent slip bands. However, HT at 900 °C effectively reduced the cellular substructure, promoting the formation of high-angle grain boundaries, which significantly enhanced the fatigue resistance of HT 316L.
536 _ _ |a 1241 - Gas turbines (POF4-124)
|0 G:(DE-HGF)POF4-1241
|c POF4-124
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Jaskari, Matias
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Abd-Elaziem, Walaa
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Allam, Tarek
|0 P:(DE-Juel1)194507
|b 3
|u fzj
700 1 _ |a Järvenpää, Antti
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1016/j.prostr.2025.06.083
|g Vol. 68, p. 465 - 471
|0 PERI:(DE-600)2880750-9
|p 465 - 471
|t Procedia structural integrity
|v 68
|y 2025
|x 2452-3216
856 4 _ |u https://juser.fz-juelich.de/record/1046975/files/1-s2.0-S2452321625000848-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1046975
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)194507
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-124
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Hochtemperaturtechnologien
|9 G:(DE-HGF)POF4-1241
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-1-20101013
|k IMD-1
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-1-20101013
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21