001     1046979
005     20251007202036.0
024 7 _ |a 10.48550/ARXIV.2507.10360
|2 doi
037 _ _ |a FZJ-2025-04047
041 _ _ |a English
100 1 _ |a Foos, Niklas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Beyond-mean-field fluctuations for the solution of constraint satisfaction problems
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1759844041_9312
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Constraint Satisfaction Problems (CSPs) lie at the heart of complexity theory and find application in a plethora of prominent tasks ranging from cryptography to genetics. Classical approaches use Hopfield networks to find approximate solutions while recently, modern machine-learning techniques like graph neural networks have become popular for this task. In this study, we employ the known mapping of MAX-2-SAT, a class of CSPs, to a spin-glass system from statistical physics, and use Glauber dynamics to approximately find its ground state, which corresponds to the optimal solution of the underlying problem. We show that Glauber dynamics outperforms the traditional Hopfield-network approach and can compete with state-of-the-art solvers. A systematic theoretical analysis uncovers the role of stochastic fluctuations in finding CSP solutions: even in the absense of thermal fluctuations at $T=0$ a significant portion of spins, which correspond to the CSP variables, attains an effective spin-dependent non-zero temperature. These spins form a subspace in which the stochastic Glauber dynamics continuously performs flips to eventually find better solutions. This is possible since the energy is degenerate, such that spin flips in this free-spin space do not require energy. Our theoretical analysis leads to new deterministic solvers that effectively account for such fluctuations, thereby reaching state-of-the-art performance.
536 _ _ |a 5214 - Quantum State Preparation and Control (POF4-521)
|0 G:(DE-HGF)POF4-5214
|c POF4-521
|f POF IV
|x 0
536 _ _ |a Verbundprojekt: German Quantum Computer based on Superconducting Qubits (GEQCOS) - Teilvorhaben: Charakterisierung, Kontrolle und Auslese (13N15685)
|0 G:(BMBF)13N15685
|c 13N15685
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Disordered Systems and Neural Networks (cond-mat.dis-nn)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Epping, Bastian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Grundler, Jannik
|0 P:(DE-Juel1)198809
|b 2
|u fzj
700 1 _ |a Ciobanu, Alexandru
|0 P:(DE-Juel1)202049
|b 3
|u fzj
700 1 _ |a Singh, Ajainderpal
|0 P:(DE-Juel1)200194
|b 4
700 1 _ |a Bode, Tim
|0 P:(DE-Juel1)195623
|b 5
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 6
|u fzj
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 7
|u fzj
773 _ _ |a 10.48550/ARXIV.2507.10360
909 C O |o oai:juser.fz-juelich.de:1046979
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)198809
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)202049
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)195623
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)144806
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)156459
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5214
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21