001046982 001__ 1046982
001046982 005__ 20251007202036.0
001046982 0247_ $$2doi$$a10.1103/PhysRevResearch.7.023165
001046982 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04050
001046982 037__ $$aFZJ-2025-04050
001046982 041__ $$aEnglish
001046982 082__ $$a530
001046982 1001_ $$0P:(DE-HGF)0$$aMüller, Thorge$$b0$$eCorresponding author
001046982 245__ $$aLimitations of quantum approximate optimization in solving generic higher-order constraint-satisfaction problems
001046982 260__ $$aCollege Park, MD$$bAPS$$c2025
001046982 3367_ $$2DRIVER$$aarticle
001046982 3367_ $$2DataCite$$aOutput Types/Journal article
001046982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759845158_10319
001046982 3367_ $$2BibTeX$$aARTICLE
001046982 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046982 3367_ $$00$$2EndNote$$aJournal Article
001046982 520__ $$aThe ability of the quantum approximate optimization algorithm (QAOA) to deliver a quantum advantage on combinatorial optimization problems is still unclear. Recently, a scaling advantage over a classical solver was postulated to exist for random 8-SAT at the satisfiability threshold. At the same time, the viability of quantum error mitigation for deep circuits on near-term devices has been put into doubt. Here we analyze the QAOA's performance on random Max-
001046982 536__ $$0G:(DE-HGF)POF4-5214$$a5214 - Quantum State Preparation and Control (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001046982 536__ $$0G:(DE-Juel1)BMBF-13N16149$$aBMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149)$$cBMBF-13N16149$$x1
001046982 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046982 7001_ $$0P:(DE-Juel1)200194$$aSingh, Ajainderpal$$b1
001046982 7001_ $$0P:(DE-Juel1)184630$$aWilhelm, Frank K.$$b2
001046982 7001_ $$0P:(DE-Juel1)195623$$aBode, Tim$$b3
001046982 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.7.023165$$gVol. 7, no. 2, p. 023165$$n2$$p023165$$tPhysical review research$$v7$$x2643-1564$$y2025
001046982 8564_ $$uhttps://juser.fz-juelich.de/record/1046982/files/PhysRevResearch.7.023165.pdf$$yOpenAccess
001046982 909CO $$ooai:juser.fz-juelich.de:1046982$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001046982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b2$$kFZJ
001046982 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195623$$aForschungszentrum Jülich$$b3$$kFZJ
001046982 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5214$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001046982 9141_ $$y2025
001046982 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001046982 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046982 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-02
001046982 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-02-07T08:08:02Z
001046982 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-02-07T08:08:02Z
001046982 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001046982 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001046982 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046982 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-02-07T08:08:02Z
001046982 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001046982 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001046982 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001046982 920__ $$lyes
001046982 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001046982 980__ $$ajournal
001046982 980__ $$aVDB
001046982 980__ $$aUNRESTRICTED
001046982 980__ $$aI:(DE-Juel1)PGI-12-20200716
001046982 9801_ $$aFullTexts