Home > Publications database > Limitations of quantum approximate optimization in solving generic higher-order constraint-satisfaction problems > print |
001 | 1046982 | ||
005 | 20251007202036.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevResearch.7.023165 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2025-04050 |2 datacite_doi |
037 | _ | _ | |a FZJ-2025-04050 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Müller, Thorge |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Limitations of quantum approximate optimization in solving generic higher-order constraint-satisfaction problems |
260 | _ | _ | |a College Park, MD |c 2025 |b APS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1759845158_10319 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The ability of the quantum approximate optimization algorithm (QAOA) to deliver a quantum advantage on combinatorial optimization problems is still unclear. Recently, a scaling advantage over a classical solver was postulated to exist for random 8-SAT at the satisfiability threshold. At the same time, the viability of quantum error mitigation for deep circuits on near-term devices has been put into doubt. Here we analyze the QAOA's performance on random Max-𝑘XORas a function of 𝑘and the clause-to-variable ratio. As a classical benchmark, we use the mean-field approximate optimization algorithm and find that it performs better than or equal to the QAOA on average. Still, for large 𝑘and numbers of layers 𝑝, there may remain a window of opportunity for the QAOA. However, by extrapolating our numerical results, we find that reaching high levels of satisfaction would require extremely large 𝑝, which must be considered rather difficult both in the variational context and on near-term devices. |
536 | _ | _ | |a 5214 - Quantum State Preparation and Control (POF4-521) |0 G:(DE-HGF)POF4-5214 |c POF4-521 |f POF IV |x 0 |
536 | _ | _ | |a BMBF 13N16149 - QSolid - Quantencomputer im Festkörper (BMBF-13N16149) |0 G:(DE-Juel1)BMBF-13N16149 |c BMBF-13N16149 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Singh, Ajainderpal |0 P:(DE-Juel1)200194 |b 1 |
700 | 1 | _ | |a Wilhelm, Frank K. |0 P:(DE-Juel1)184630 |b 2 |
700 | 1 | _ | |a Bode, Tim |0 P:(DE-Juel1)195623 |b 3 |
773 | _ | _ | |a 10.1103/PhysRevResearch.7.023165 |g Vol. 7, no. 2, p. 023165 |0 PERI:(DE-600)3004165-X |n 2 |p 023165 |t Physical review research |v 7 |y 2025 |x 2643-1564 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1046982/files/PhysRevResearch.7.023165.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1046982 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)184630 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)195623 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-521 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Materials |9 G:(DE-HGF)POF4-5214 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-02-07T08:08:02Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-02-07T08:08:02Z |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-02-07T08:08:02Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-12-20200716 |k PGI-12 |l Quantum Computing Analytics |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-12-20200716 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|