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The ability of the quantum approximate optimization algorithm (QAOA) to deliver a quantum advantage on
combinatorial optimization problems is still unclear. Recently, a scaling advantage over a classical solver was
postulated to exist for random 8-SAT at the satisfiability threshold. At the same time, the viability of quantum
error mitigation for deep circuits on near-term devices has been put into doubt. Here we analyze the QAOA’s
performance on random Max-kXOR as a function of k and the clause-to-variable ratio. As a classical benchmark,
we use the mean-field approximate optimization algorithm and find that it performs better than or equal to the
QAOA on average. Still, for large k and numbers of layers p, there may remain a window of opportunity for
the QAOA. However, by extrapolating our numerical results, we find that reaching high levels of satisfaction
would require extremely large p, which must be considered rather difficult both in the variational context and on
near-term devices.
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I. INTRODUCTION

Quantum combinatorial optimization was applied to sat-
isfiability problems early on [1], underlining the naturalness
of the question if, in essence, quantum superposition could
aid combinatorial searches in exponentially large spaces. The
interest in such questions only grew after the introduction of
the quantum approximate optimization algorithm (QAOA) by
Farhi et al. [2]. Whether either adiabatic quantum computation
[3] or the QAOA can deliver an advantage over any known
best classical algorithm has remained an open question, how-
ever, not least because beating classical methods is a moving
target.

Even so, Boulebnane and Montanaro [4], by analyzing the
performance of the QAOA for the decision problem kSAT
with even k, recently found a potential speedup of the QAOA
over a state-of-the-art classical solver when applied to random
8SAT. A practical caveat to this result is the large number
of QAOA layers required to push the (still exponential) scal-
ing below the classical benchmark. A very recent result also
hinted at possible speedups for almost symmetric optimiza-
tion problems from low-depth QAOA [5].

This practical difficulty should not be underestimated,
as a unique learning-theoretic proof [6] has exponentially
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tightened the limitations of quantum error mitigation, thus
severely reducing the prospects of variational quantum al-
gorithms on near-term devices, which naturally includes the
QAOA. One key message is that even shallow circuits will
have a hard time estimating expectation values at current noise
levels. In the worst case, this would mean that the QAOA is ef-
fectively limited to low numbers of layers until quantum error
correction arrives. The QAOA had originally drawn attention
[7] as one of the first quantum algorithms that might show
an advantage over classical algorithms without fault-tolerant
quantum computation.

In the case of optimization problems involving higher-
order Pauli-Z strings, as explored below, the need to
decompose these many-body interactions into two-body cou-
plings further increases the circuit depth on platforms such as
superconducting devices.

In a similar vein, a number of results imply that models
with a provable absence of barren plateaus turn out to be
efficiently classically simulable [8,9]. Reference [10] goes
further by conjecturing that the Lie algebras of most problem
graphs grow either exponentially or polynomially in system
size, meaning that the QAOA will either suffer from barren
plateaus or turn out to be, yet again, classically simulable.

The interest in the QAOA’s potential naturally extends
beyond kSAT and their respective optimization problems,
Max-kSAT, in particular, to the related Max-kXOR problems,
with Max-2XOR having received the most thorough scrutiny
in the literature [11–13]. We remark that these problems
belong to the complexity class NP-hard for k � 2 [14]. Com-
pared to the nonexclusive OR (∨) of Max-kSAT, the literals
per constraint of Max-kXOR problem instances are connected
via an exclusive OR (⊕). The conversion from a classical
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Max-kXOR instance to a quantum operator turns a k-literal
constraint into a Pauli-Z string of length k.

Crooks [15] provided numerical evidence that the QAOA
could indeed yield an advantage over classical algorithms on
these problem types, showing that for an increasing number
of parameters 2p, the QAOA can at least surpass the lower
bound established by the classic Max-2XOR algorithm due to
Goemans and Williamson [16], which derives from semidef-
inite programming. Note that Makarychev and Makarychev
[17] showed that a general k-constrained satisfaction problem
(k-CSP) has a lower bound than a (k − 1)-CSP, i.e., increasing
k should be an interesting avenue to pursue in the search for
an advantage.

Consequently, here delve into the performance of the
QAOA on problems with k > 2 literals (constraints) per
clause, where Akshay et al. [18] conducted a performance
investigation of the QAOA as a function of the clause-to-
variable ratio r for Max-kSAT. They showed that for k = 3,
one needs higher p than for k = 2 to achieve the same accu-
racy of the locally optimal solution.

Another interesting result was given by Marwaha and Had-
field [19] for uniform Max-kXOR problems, who observed
better performance than the best-known classical algorithm,
the local threshold algorithm [20]. The graphs associated
with the problem instances in their investigation were regular
and triangle-free. Similarly, the works of Chou et al. [21],
Chen et al. [22], and Basso et al. [23] focused on random
Max-kXOR problems where the related graph is sparse. They
especially drew attention to the so-called overlap gap property
[24,25] for even k; loosely speaking, this states that if two
suboptimal (or optimal) sets of satisfied clauses are close in
energy, their bitstrings are either very close or very far from
each other in Hamming distance. They showed analytically
that, due to this property, the QAOA needs increasingly high
p values for Max-kXOR with even k.

In contrast to these previous results, we explore arbitrary
random Max-kXOR problems. Additionally, we examine the
performance specifically for odd values of k, which comple-
ments the studies conducted in Refs. [21–23].

This paper is structured as follows: We first introduce
the QAOA, the mean-field approximate optimization algo-
rithm (MF-AOA), and the Max-kXOR problem. Then we
proceed by applying the QAOA and the MF-AOA to ensem-
bles of randomly generated Max-kXOR instances. We begin
by examining the dependence of their performance on the
clause-to-variable ratio r. Subsequently, we analyze the im-
pact of the parameter k on the algorithms’ behavior. Next, we
explore the performance of the QAOA at high circuit depths,
including an analysis of the distribution of the optimized pa-
rameters. Based on these results, we estimate the circuit depth
at which QAOA achieves 99% approximation ratio. Finally,
we compare the performance of the QAOA and MF-AOA
across different values of k.

II. MAX-kXOR

As mentioned, the distinction between kSAT and kXOR
problems is that the variables within a clause of the latter are
linked by the exclusive OR (⊕) operator. In fact, a random

TABLE I. Truth table for a 3XOR clause consisting of the N = 3
variables x1, x2, and x3. The rightmost column shows the results
under which assignment to the variables the clause is satisfied.

x1 x2 x3 x1 ⊕ x2 ⊕ x3

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

kXOR decision problem can be written as

C =
∧

{i1,i2,..,ik}∈M

xi1 ⊕ xi2 ⊕ · · · ⊕ xik , (1)

where the x1, . . . , xN ∈ {0, 1} are the N variables defining the
problem and M denotes the set of clauses. As an example,
if we pick a 2XOR problem with three variables and three
clauses, we have

C = (x1 ⊕ x2) ∧ (x2 ⊕ x3) ∧ (x1 ⊕ x3). (2)

To go from the decision problem to the optimization problem,
we transform ∧ → ∑

and ⊕ → +. Hence, C can also be
expressed as

C =
∑

{i1,i2,...,ik}∈M

(
xi1 + xi2 + · · · + xik + ai1...ik

)
mod 2, (3)

where the symbol ai1...ik ∈ {0, 1} represents the parity sign
corresponding to the selected clause, fixing the preferred truth
convention for that specific clause. In the context of Max-
2XOR, all parity signs are set to 1 and all variables are
non-negated, resulting in the well-known standard formula-
tion of Max-Cut. If instead we negate one variable in every
clause by convention, each clause would be satisfied if and
only if both variables are equal, which is the opposite of
standard Max-Cut.

The problem can be translated into a quantum operator
C → Ĉ. To understand the transformation, we investigate the
exemplary truth table of Max-3XOR in Table I. The outcome
of the truth table (rightmost column of Table I) can be repre-
sented by Pauli-Z strings and the identity matrix. Hence, we
identify {0, 1} → {1,−1} and obtain Ĉ = 1 − Ẑ1Ẑ2Ẑ3 for this
single-clause example. We can easily generalize this result to
Max-kXOR, resulting in

Ĉ =
∑

{i1,i2,...,ik}∈M

1
2

(
1 ± Ẑi1 Ẑi2 · · · Ẑik

)
, (4)

where the signs depend on the respective parities ai1...ik from
Eq. (3).

We finish this section by discussing how to sample these
random Max-kXOR instances. The clause-to-variable ratio is
defined as

r = |M|
N

. (5)
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Because we are interested in random graphs, we need to de-
termine the clause probability corresponding to specific values
of r, N , and k. Now, one might assume that there are 2k total
clauses for a given k literal, given the inclusion of negated
variables. This would imply that the number of all possible
clauses for Max- kXOR at system size N is 2k

(N
k

)
. However,

by looking at the exemplary truth table shown in Table I,
we see that the truth value of each of the 2k clauses only
depends on the parity of negations, i.e., an odd number of
negated variables results in the corresponding clause being
violated, while an even number of negations results in a true
clause. Effectively, then, for the k-literal of Table I, we have
only two distinct outcomes with opposite parity signs in the
cost function. Clearly, including both of these would render
the cost function trivial. For this reason, we randomly choose
among these two possibilities for each k literal, which results
in 2

(N
k

)
being the effective total number of clauses. Therefore,

to find a specific random instance of Max-kXOR for given r,
one can randomly pick from the set of all possible clauses with
a probability

P = rN

(
N

k

)−1

. (6)

To calculate the performance of QAOA applied to a specific
Max-kXOR problem with fixed r, we then average over a set
of random instances per value of k. Furthermore, we only
take pure k-literal constraints into account [instead of (k − 1)-
literals, etc.] because we want to investigate the performance
of the QAOA in clean dependence on k.

III. METHODS

A. The QAOA

Every constrained satisfaction problem with k literals can
be converted into a quantum operator consisting of diagonal
quantum Pauli-Z strings, expressed as

Ĉ =
∑

i1,...,ik

Ji1,...,ik Ẑi1 · · · Ẑik , (7)

where the Ji,...,ik are real. The corresponding unitary operator
is given by

ÛC (γ ) = exp(−iγ Ĉ). (8)

In the QAOA, the cost function or problem Hamiltonian
is complemented by a so-called driver Hamiltonian typically
inducing a unitary

ÛX (β ) = exp

(
−iβ

N∑
i=1

X̂i

)
(9)

comprised of single-qubit X rotation gates. These gates, often
called transverse-field operators in the quantum-annealing lit-
erature [26], are responsible for driving transitions between
computational basis states, i.e., solution states. The QAOA
ansatz is then constructed from p pairs of these unitaries,

|γ , β〉 = ÛX (βp)ÛC (γp) · · · ÛX (β1)ÛC (γ1)|+〉⊗n, (10)

where γ , β are classical parameters. From the ansatz state, the
expectation value of the cost function is computed as

Fp(γ , β ) = 〈γ , β|Ĉ|γ , β〉, (11)

which serves as the loss function to be optimized, i.e., the aim
is to determine the values of γ and β that maximize Fp(γ , β ).
To quantify the performance of the QAOA, we introduce the
approximation ratio

Mp = maxγ ,β Fp(γ , β ) − Emin

Emax − Emin
, (12)

where Emin and Emax are the minimum and maximum val-
ues of Ĉ, respectively. To determine the optimal angles for
Eq. (12), we adopt the linear interpolation strategy proposed
by Zhou et al. [27]:

[γ(p+1)]i = i − 1

p
[γ ∗

(p)]i−1 + p − i + 1

p
[γ ∗

(p)]i, (13)

where γ(p+1) serves as the initial point for the optimizer (we
use COBYLA) with p + 1 parameters for γ . All parameters
[γ(p+1)]i are then independently optimized to obtain γ ∗

(p+1).
Here, γ ∗

(p) represents the optimized parameters for p. The
subscript i denotes the individual parameters of each point. To
compute the initial point [γ(p+1)]i, we interpolate between the
corresponding values [γ (p)∗]i. For the initial parameters of
β(p+1), we replace γ → β in Eq. (13). For p � 3, we use a ran-
dom initialization strategy, generating 1000 random starting
points and optimizing them with COBYLA to create a shape
suitable for interpolation. Unless stated otherwise, this linear
interpolation strategy is applied to all instances independently.

B. Mean-field approximate optimization

The MF-AOA [28] can be viewed the classical counter-
part to the QAOA, where quantum evolution is replaced by
classical spin dynamics via the mean-field approximation. A
simplified version of it has indeed been considered in the early
days of quantum optimization [29,30]. Here, we generalize
the algorithm to arbitrary k-spin interactions as occurring in
k-CSPs. Through the analogy of the fixed-angle QAOA with
adiabatic quantum computation, we introduce the adiabatic
Hamiltonian as

Ĥ (s) = (1 − s(t ))
N∑

i=1

X̂i + s(t )Ĉ, (14)

where s(t ) = t/Tf , s(t ) ∈ [0, 1] is the scaled time. The mean-
field form of this Hamiltonian is then given by

H (s)= (1 − s(t ))
N∑

i=1

nx
i (t ) + s(t )

∑
i1,...,ik

Ji1,...,ik nz
i1

(t ) · · · nz
ik

(t ),

(15)

with ni(t ) = (nx
i (t ), ny

i (t ), nz
i (t ))T being the classical spin vec-

tors living on their respective Bloch spheres. The effective
magnetization

mij (t ) =
∑

i1,...,i j−1,i j+1,...,ik−1

Ji1,...,i j−1,i j+1,...,ik−1

× nz
i1

(t ) · · · nz
i j−1

(t )nz
i j+1

(t ) · · · nz
ik

(t ) (16)
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TABLE II. Standard deviations σ used in the random catalysts of
Eq. (18) for different k and r.

k 3 4 5 6 7 8 9 10

r = 0.5 0.2 0.5 1.0 1.0 1.5 1.5 2.0 3.0
r = 1.5 0.5 1.0 1.0 1.0 1.5 1.5 1.5 3.0

then determines the classical equations of motion as

ṅx
i (t ) = −2s(t )mi(t )ny

i (t ),

ṅy
i (t ) = 2s(t )mi(t )nx

i (t ) − 2(1 − s(t ))nz
i (t ),

ṅz
i (t ) = 2(1 − s(t ))ny

i (t ). (17)

This set of 3N nonlinear ordinary differential equations can
be solved numerically in an efficient way [31]. These equa-
tions can be derived, e.g., from the Heisenberg equations of
motion via a product ansatz for the density matrix. We also
remark that a similar product ansatz is used to derive near-
optimal approximation ratios for the quantum generalization
of Max-Cut in Ref. [32].

For Z2-symmetric problem Hamiltonians, i.e., those with-
out a local tensor Ji1 , the effective magnetization evidently
remains zero throughout. To circumvent this issue, in the
MF-AOA it is necessary to explicitly break the Z2 symmetry.
A useful way of achieving this is to add a so-called catalyst
Hamiltonian [33]

Ĥcat =
N∑

i=1

�i(t )Ẑi (18)

to Eq. (14), where the coefficients λi(t ) need to obey the
boundary conditions λi(0) = λi(Tf ) = 0. For our purposes,
it suffices to take �i(t ) = λis2(t )(1 − s(t )), where the λi are
chosen from a normal distribution N (0, σ 2). For the purpose
of this paper, the standard deviations σ are chosen according
to Table II. Note that this additional Hamiltonian term does
not affect the initial and final spectrum, as it is zero at both the
beginning and the end of the adiabatic evolution. The effective
magnetization can now be written as

mij (t ) = �i j (t ) +
∑

i1,...,i j−1,i j+1,...,ik−1

Ji1,...,i j−1,i j+1,...,ik−1

× nz
i1

(t ) · · · nz
i j−1

(t )nz
i j+1

(t ) · · · nz
ik

(t ). (19)

The equations of motion are then evolved adaptively up to a
final time Tf = 215 in units of the inverse initial transverse
field, and the solution bit string is obtained by projecting the
z components of the final spin vectors ni(Tf ) to the poles of
their Bloch spheres via

σ = (
sign

(
nz

1(Tf )
)
, . . . , sign

(
nz

N (Tf )
)T

. (20)

IV. RESULTS

A. QAOA approximation ratio as a function
of the clause-to-variable ratio

The clause-to-variable ratio r is a critical property of
specific instances of CSPs. As the clause-to-variable ratio
increases, they transition from an underconstrained regime

FIG. 1. The normalized number of degenerate ground states P0

defined in Eq. (21) against the clause-to-variable ratio r. We investi-
gate P0 for k = 3, 4, 5, 6 at N = 15 and average over 400 instances
per k and r.

to an overconstrained regime. Generally speaking, overcon-
strained instances will be harder than underconstrained ones.
This statement should be understood in a statistical sense: at
high r, hard random instances will be more prevalent, while
easy instances may still occur.

For small r, the instances are underconstrained, and typ-
ically not every variable appears in every clause; hence
multiple solutions can exist. Such instances are easy to solve
for a given algorithm. Additionally, the effective problem size
N can be reduced. To construct underconstrained and over-
constrained problems, we define

P0 = 2−N
∑

i

E0,i (21)

as the ratio of the number of degenerate ground states and
the total number of possible variable assignments, which is
2N . Figure 1 illustrates how P0 scales with r, e.g., for small
r = 0.1, we have P0 ≈ 0.15, which means that 15% of all
states correspond to the optimal solution, making these in-
stances highly underconstrained. As r increases, the number
of optimal solutions drops quickly. For r = 1.5, we already
have P0 ≈ 10−5 for odd k = 3, 5 and P0 ≈ 10−4 for even
k = 4, 6. For k = 3, 5, in particular, the instances approach
unique solutions for high r. Such instances with only a few
ground states are overconstrained because every variable is
typically included in at least one clause. An exact threshold
for under- and overconstrained random instances does not ex-
ist, but as a rule of thumb, we can state that r < 1 corresponds
to less than one clause per variable. We also note that the
decrease in the approximation ratio slows down for all p and
k at high values of r.

The upper panel of Fig. 2 displays the results for the
QAOA applied to Max-kXOR as a function of r. We fix k = 5
and investigate the ensemble-averaged approximation ratio for
p = 1, 2, 3, 4; we observe a clear dependence on r. Crucially,
Mp, as defined in Eq. (12), exhibits a significant decrease
with growing r, regardless of the specific Max-kXOR problem
and the value of p. For high r, the instances become hard
to solve. Importantly, higher values of p merely result in a
vertical shift along the Mp axis and not in a systematically
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FIG. 2. Ensemble-averaged approximation ratio of the QAOA at
N = 18. For every r, k, p, we average over 10 000 random instances.
Upper panel: Mp against the clause-to-variable ratio r for k = 5 and
p = 1, 2, 3, 4. Lower panel: Mp as a function of the parameter r for
k ∈ [3, 10].

improved scaling. We remark that increasing r until all-to-all
connected problem graphs are reached would lead to another
underconstrained regime in which the approximation ratio of
the QAOA should improve again. The Max-5XOR problem
is used as a representative; we did not observe qualitatively
different results for other values of k.

B. Mean-field approximation ratio as a function
of the clause-to-variable ratio

To investigate how the mean-field approximation ratio de-
pends on the clause-to-variable ratio r, we apply the MF-AOA
to random instances of the Max-kXOR problem across the
entire range of possible r values for fixed N and k. For this
problem, the number of clauses ranges from 1 to 2

(N
k

)
. We

plot the relative energy deviation (E∗ − E0)/E0 as a function
of r, as this metric quantifies how close the system is to the
true ground state of the problem Hamiltonian. It also serves
as a useful hardness measure for MF-AOA across different
problem instances.

In the decision variant of the k-XOR problem, a well-
known phase transition occurs at M = N , corresponding to
r = 1. Instances with r < 1 or r � 1 are computationally less
challenging to solve compared to those around r = 1. For the
optimization variant, the results presented in Fig. 3 demon-
strate distinct performance regimes. In the underconstrained
regime (r < 1), where the associated problem graph is sparse,
the system remains closer to the ground state. Conversely, in
the hard regime (r > 1) the ensemble-averaged approximation
ratio plateaus, becoming largely independent of the clause-to-
variable ratio.

FIG. 3. The relative energy deviation (E∗ − E0)/E0 plotted as
a function of r for k = 3 and N = 8, covering the entire range of
possible r. Each point represents the average over 500 randomly
generated instances. The dotted line indicates the phase transition
from easy to hard for the kXOR decision problem.

Since the approximation ratio in the hard regime does not
vary significantly with r, we fix r = 0.5 for the easy case and
r = 1.5 for the hard case in the remainder of the paper.

C. QAOA approximation ratio as a function of k

In this section, we investigate how the ensemble-averaged
approximation ratio of the QAOA changes when applied to
random Max-kXOR instances for large k and fixed p = 4. The
results are shown in the lower panel of Fig. 2. For large r, we
observe that M4 decreases with k, providing a first indication
that random Max-kXOR becomes harder and harder to solve
for the QAOA. This is in contrast to the results of Marwaha
and Hadfield [19] for uniform instances, who observed an
increase in the QAOA’s approximation ratio with k. In Fig. 2,
it is evident that the standard deviation is larger for small r
than for large r for all values of k. This is due to a higher
variability in the difficulty of random instances when r is
closer to zero. We also observe the impact of delocalization on
the QAOA. To illustrate the delocalization effect, we choose
a constant value for k. Upon selecting a random assignment
of the variables for a given instance, flipping a single bit
induces a change in the cost function. If we now calculate
this change of cost for an instance with k + 1, we observe an
increase as compared to k. The QAOA is of local structure
through its single-qubit X -driver, leading to a decrease in the
ensemble-averaged approximation ratio as k increases.

D. QAOA approximation ratio at high circuit depth

This section analyzes how the QAOA performs on hard-to-
solve random instances at large p. As previously discussed,
solving random instances with large r is more difficult than
those with small r, regardless of the value of k, unless the
problem-related graph is nearly all to all connected, i.e.,

r ≈
(

N

k

)
N−1. (22)

In Fig. 4, we plot the results for Mp with p ∈ {1, . . . , 30} and
k ∈ {3, . . . , 10}. As k increases, solving Max-kXOR problems
with the QAOA becomes significantly more challenging. This
trend suggests that an exponentially larger number of layers is
required to reach the ground state for high values of k.
Extending the findings of Basso et al. [23], who
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FIG. 4. The ensemble-averaged approximation ratio Mp against p for Max-kXOR with k ∈ {3, . . . , 10}. We set N = 18 and r = 1.5 to
investigate hard-to-solve instances for the QAOA. For each p and k, we average over 100 random instances. The inset shows the collapsed
logarithmic fits to the data (i.e., subtracting each constant shift). The solid (red) line is drawn for illustration with a coefficient of c = 0.06.

demonstrated the inefficiency of the QAOA for solving
Max-kXOR problems with even values of k, we thus provide
numerical evidence that this assertion seems to hold for all
values of k.

Figure 5 presents the average results for the calculated
parameters. The standard deviation remains low for small
values of p and increases for higher p. Beyond p = 30, the
linear-interpolation method shows no further improvement. In
contrast, the Fourier-based approach proposed by Zhou et al.
[27] demonstrates promising performance for p > 30, albeit
at a significantly higher computational cost.

To assess the limitations of the QAOA, we estimate the
number of layers p required to an approximation ratio of 90%
and above for challenging problem instances in Fig. 6. Specif-
ically, we fit the data from Fig. 4 to a logarithmic ansatz (see
inset of Fig. 4). To improve the accuracy of the fit for higher
p values, we exclude the first data point (p = 1). By extrapo-
lating the resulting fits to high p, we can estimate the p value
at which a given Mp is achieved. For lower values of k (e.g.,
k = 3), a circuit depth of p ≈ 50 is required to reach 99%
of the ground-state energy. For larger k (e.g., k = 10), this
increases to approximately p = 770 layers. These findings
highlight the limitations of the QAOA on current hardware,
where gate fidelities of around 99.5% make it impractical to
implement circuit depths as large as p = 50.

FIG. 5. The ensemble-averaged optimal parameters β̄, γ̄ for the
QAOA with p = 10 (left plot) and p = 20 (right plot). The averages
are taken over the ensembles of Fig. 4 with 100 instances per k and
p.

E. QAOA approximation ratio at larger N

In the previous chapters, we set N = 18 to be able to sim-
ulate the QAOA with reasonable computational effort. In this
section, we now aim to investigate how the QAOA performs
for larger system sizes N . To compute the values of Mp, we
use the optimal angles from Fig. 5 found at N = 18 and apply
these parameters to instances with N > 18 for each k, i.e.,
we do not perform the parameter optimization for N > 18.
Exemplary results for p = 20 are shown in Fig. 7.

We observe that, for each k, the ensemble-averaged ap-
proximation ratio of the QAOA remains nearly constant
across all investigated values of N , suggesting a certain de-
gree of universality of our optimized angles. These findings
are consistent with those of Farhi et al. [13], who demon-
strated that parameters originally derived for the infinite-size
Sherrington-Kirkpatrick model were also applicable to finite-
size instances.

To investigate the transition in behavior from small
(N ≈ 10) to larger system sizes (N ≈ 20), we analyze the
ensemble-averaged probability distribution of the QAOA
across states ranging from the ground state to the eighth

FIG. 6. The required p to reach various ensemble-averaged ap-
proximation ratio thresholds Mp as a function of k. The value of p is
determined by fitting a logarithmic function to Fig. 4. The dotted
curves represent exponential and polynomial fits, along with the
root-mean-squared error (RMSE) of each fit.
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FIG. 7. Ensemble-averaged approximation ratio M20 against
system size N . Per N and Max-kXOR, we average over 100
instances.

excited state. These distributions, plotted in Fig. 8 for k = 3,
reveal a trend that closely follows a Poisson distribution for
different values of N . For small systems, the distribution
exhibits concentration of states near the ground state. As N
increases, this concentration diminishes, accompanied by a
noticeable shift toward higher excited states.

F. MF-AOA vs QAOA

In this section, we compare the ensemble-averaged approx-
imation ratio of the QAOA with the MF-AOA by analyzing
Mp across random Max-kXOR instances. This provides
insight into how both algorithms compare across varying
problem complexities and circuit depths.

FIG. 8. Concentration of the ensemble-averaged probability dis-
tributions of the final states reached by the QAOA for k = 3. The
state indices are ordered by energy, with 0 indicating the ground
state. Above the eighth excited state, the probabilities become neg-
ligible. Note that the Poisson distributions are not fitted but simply
evaluated at the mean state index.

FIG. 9. The distribution of Mp against k for Max-kXOR with
k ∈ {3, . . . , 10}. We set N = 18 and r = 1.5 to compare hard-to-
solve instances for the QAOA against mean field. While the shaded
area indicates the outcome distribution, the points represent averages
over 100 random instances.

In Fig. 9, we plot the distribution of Mp as a function
of k, with a fixed r = 1.5 and circuit depth p = 30 for the
QAOA. This allows us to compare both algorithms’ ensemble-
averaged approximation ratio for increasing values of k, which
corresponds to the number of literals in each clause of the
Max-kXOR problem. We observe that the MF-AOA exhibits
a broadened distribution of Mp, indicating greater variance
of the MF-AOA across random instances. Despite the wider
distribution, the MF-AOA consistently matches the QAOA
on average. Notably, the QAOA’s ensemble-averaged approx-
imation ratio relative to MF-AOA improves as k increases. It
seems likely that both the increased MF-AOA variance and the
slightly lower approximation ratio at larger k can be addressed
by sampling more random catalysts according to Eq. (18).

In Fig. 10, we plot Mp against p for four distinct com-
binations of k and r, representing both easy and hard cases,
as well as low and high values of k. We compare the
ensemble-averaged approximation ratio of the QAOA (in de-
pendence on the circuit depth) with that of the MF-AOA.

FIG. 10. Ensemble-averaged approximation ratio Mp against p
for the QAOA (red solid-dotted line) and the MF-AOA (blue solid
horizontal line) across four different combinations of k and r. Each
line represents an average over 100 random instances, with the
shaded areas indicating the standard deviation.
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FIG. 11. Ensemble-averaged approximation ratio Mp against
system size N for the MF-AOA and the QAOA ranging from
p = 1 to p = 25 for k = 3. Each line represents an average
over 100 random instances. The clearly visible convergence of
the QAOA’s approximation ratio with increasing p raises the
question whether anything is to be gained by going to deeper
circuits.

For hard instances (r = 1.5), we observe that the QAOA
approaches and eventually surpasses the MF-AOA’s approx-
imation ratio as the circuit depth increases. However, the
QAOA requires relatively high circuit depths to match the
Mp value achieved by the classical benchmark for both
low and high k values. Notably, for the easy case(r = 0.5)
at k = 5, the QAOA matches the classical approximation
ratio at relatively low circuit depth p = 17 and even sur-
passes it at large depths. However, the MF-AOA results
require hardly any computational effort, while the angle
optimization going into the QAOA results consumes consid-
erable resources (besides being problematic on noisy quantum
hardware [6,8–10]).

To identify a region where the QAOA outperforms its
classical counterpart (MF-AOA), we compare both algo-
rithms in Fig. 11 across varying system sizes and circuit
depths. Our findings show that for small systems (N ≈ 8),
the QAOA outperforms the MF-AOA. However, as the
system size increases (N ≈ 20), the MF-AOA surpasses the
QAOA. Interestingly, for small values of p, the QAOA’s ap-
proximation ratio remains nearly independent of the system
size.

V. CONCLUSION AND OUTLOOK

Our numerical analysis demonstrates that the relative im-
provement of the QAOA’s ensemble-averaged approximation
ratio applied to Max-kXOR declines as both the parameter
k and the number of layers p increase. Our results provide
explicit numerical evidence detailing the approximation ratio
of the QAOA across different Max-kXOR instances (for odd
and even k) and tentatively predict the circuit depth required
to achieve an approximation ratio Mp exceeding 90%. Addi-
tionally, we observe that the parameters optimized for a fixed
problem size (N = 18) appear to generalize well to larger
systems. These results suggest that achieving solutions close
to optimal will require significantly higher circuit depths than
presently available. These findings align with the analytic
observations of Basso et al. [23], who noted challenges in
using the QAOA to approximate ground state energies for
sparse Max-kXOR problems (even k), especially for larger k,
with shallow circuits.

Interestingly, the same approximation-ratio decrease in k is
experienced by our classical benchmark, seemingly resulting
in a slight average advantage for the QAOA at larger k; see
Fig. 9. It would be intriguing for future work to look into the
behavior of other classical solvers in the same limit. We also
point out that our mean-field results should be considered a
lower bound on the possible ensemble-averaged approxima-
tion ratio, as there is, at the very least, the option to sample
more instantiations of our random catalyst from Eq. (18).
Since any proper time-to-solution analysis [3] has to take into
account optimizing the QAOA angles, there is a lot of leeway
for classical benchmarks in this regard. Overall, we provide
evidence that the QAOA, as applied to random Max-kXOR
problems with odd and even k, might not show an advantage
over classical algorithms.
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