001046983 001__ 1046983
001046983 005__ 20251007202036.0
001046983 0247_ $$2doi$$a10.1103/PhysRevResearch.6.043254
001046983 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04051
001046983 037__ $$aFZJ-2025-04051
001046983 041__ $$aEnglish
001046983 082__ $$a530
001046983 1001_ $$0P:(DE-HGF)0$$aLively, Kevin$$b0$$eCorresponding author
001046983 245__ $$aNoise robust detection of quantum phase transitions
001046983 260__ $$aCollege Park, MD$$bAPS$$c2024
001046983 3367_ $$2DRIVER$$aarticle
001046983 3367_ $$2DataCite$$aOutput Types/Journal article
001046983 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1759845242_10319
001046983 3367_ $$2BibTeX$$aARTICLE
001046983 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001046983 3367_ $$00$$2EndNote$$aJournal Article
001046983 520__ $$aQuantum computing allows for the manipulation of highly correlated states whose properties quickly go beyond the capacity of any classical method to calculate. Thus one natural problem which could lend itself to quantum advantage is the study of ground-states of condensed matter models, and the transitions between them. However, current levels of hardware noise can require extensive application of error-mitigation techniques to achieve reliable computations. In this work, we use several IBM devices to explore a finite-size spin model with multiple “phaselike” regions characterized by distinct ground-state configurations. Using preoptimized Variational Quantum Eigensolver (VQE) solutions, we demonstrate that in contrast to calculating the energy, where zero-noise extrapolation is required in order to obtain qualitatively accurate yet still unreliable results, calculations of the energy derivative, two-site spin correlation functions, and the fidelity susceptibility yield accurate behavior across multiple regions, even with minimal or no application of error-mitigation approaches. Taken together, these sets of observables could be used to identify level crossings in a simple, noise-robust manner which is agnostic to the method of ground state preparation. This work shows promising potential for near-term application to identifying quantum phase transitions, including avoided crossings and nonadiabatic conical intersections in electronic structure calculations.
001046983 536__ $$0G:(DE-HGF)POF4-5214$$a5214 - Quantum State Preparation and Control (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001046983 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001046983 7001_ $$0P:(DE-Juel1)195623$$aBode, Tim$$b1$$eCorresponding author
001046983 7001_ $$0P:(DE-HGF)0$$aSzangolies, Jochen$$b2
001046983 7001_ $$0P:(DE-HGF)0$$aZhu, Jian-Xin$$b3
001046983 7001_ $$0P:(DE-HGF)0$$aFauseweh, Benedikt$$b4
001046983 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.6.043254$$gVol. 6, no. 4, p. 043254$$n4$$p043254$$tPhysical review research$$v6$$x2643-1564$$y2024
001046983 8564_ $$uhttps://juser.fz-juelich.de/record/1046983/files/PhysRevResearch.6.043254.pdf$$yOpenAccess
001046983 909CO $$ooai:juser.fz-juelich.de:1046983$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001046983 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195623$$aForschungszentrum Jülich$$b1$$kFZJ
001046983 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5214$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001046983 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001046983 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001046983 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-02
001046983 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-02-07T08:08:02Z
001046983 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-02-07T08:08:02Z
001046983 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001046983 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001046983 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001046983 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-02-07T08:08:02Z
001046983 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001046983 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001046983 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001046983 920__ $$lyes
001046983 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001046983 980__ $$ajournal
001046983 980__ $$aVDB
001046983 980__ $$aUNRESTRICTED
001046983 980__ $$aI:(DE-Juel1)PGI-12-20200716
001046983 9801_ $$aFullTexts