001047019 001__ 1047019
001047019 005__ 20260109202555.0
001047019 0247_ $$2doi$$a10.1039/D5YA00141B
001047019 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04075
001047019 037__ $$aFZJ-2025-04075
001047019 082__ $$a620
001047019 1001_ $$0P:(DE-HGF)0$$aHeuer, Philip$$b0
001047019 245__ $$aAttaining a fast-conducting, hybrid solid state separator for all solid-state batteries through a facile wet infiltration method
001047019 260__ $$aBeijing$$bRoyal Society of Chemistry$$c2025
001047019 3367_ $$2DRIVER$$aarticle
001047019 3367_ $$2DataCite$$aOutput Types/Journal article
001047019 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767959190_11978
001047019 3367_ $$2BibTeX$$aARTICLE
001047019 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047019 3367_ $$00$$2EndNote$$aJournal Article
001047019 520__ $$aThin, fast-conducting and mechanically robust separators are expected to be advantageous in enabling all-solid-state batteries with high energy densities and good electrochemical performance. In this study, a potentially new scalable fabrication route for flexible thiophosphate–polymer separator membranes is demonstrated. By infiltrating a commercially available polymer mesh with the highly conductive inorganic solid ion conductor $Li_{5.5}PS_{4.5}Cl_{1.5}$, a hybrid separator membrane with a high ionic conductivity is realized. The electrochemical evaluation via rate capability tests reveals superior performance at low stack pressures and high C-rates, when comparing cells employing the hybrid membrane separator, to cells utilizing conventional solid electrolyte separators. As a proof of concept, a full cell implementing the hybrid membrane between a Si-based anode and a $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2–Li_{5.5}PS_{4.5}Cl_{1.5}$ composite cathode is evaluated. The experimental work is complemented by resistor network modelling of the hybrid membrane sheets, shedding light on potential challenges in cell operation.
001047019 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001047019 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047019 7001_ $$0P:(DE-HGF)0$$aKetter, Lukas$$b1
001047019 7001_ $$0P:(DE-HGF)0$$aRana, Moumita$$b2
001047019 7001_ $$0P:(DE-Juel1)188525$$aScharf, Felix$$b3
001047019 7001_ $$0P:(DE-Juel1)172047$$aBrunklaus, Gunther$$b4
001047019 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b5$$eCorresponding author
001047019 773__ $$0PERI:(DE-600)3168416-6$$a10.1039/D5YA00141B$$gp. 10.1039.D5YA00141B$$p1356-1362$$tEnergy advances$$v4$$x2753-1457$$y2025
001047019 8564_ $$uhttps://juser.fz-juelich.de/record/1047019/files/d5ya00141b.pdf$$yOpenAccess
001047019 909CO $$ooai:juser.fz-juelich.de:1047019$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001047019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188525$$aForschungszentrum Jülich$$b3$$kFZJ
001047019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172047$$aForschungszentrum Jülich$$b4$$kFZJ
001047019 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b5$$kFZJ
001047019 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001047019 9141_ $$y2025
001047019 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001047019 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001047019 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2025-01-02
001047019 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-07-23T09:18:39Z
001047019 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-07-23T09:18:39Z
001047019 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001047019 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001047019 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047019 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-07-23T09:18:39Z
001047019 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001047019 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001047019 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001047019 920__ $$lyes
001047019 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001047019 980__ $$ajournal
001047019 980__ $$aVDB
001047019 980__ $$aUNRESTRICTED
001047019 980__ $$aI:(DE-Juel1)IMD-4-20141217
001047019 9801_ $$aFullTexts