001047020 001__ 1047020
001047020 005__ 20260109202555.0
001047020 0247_ $$2doi$$a10.1002/smll.202507279
001047020 0247_ $$2ISSN$$a1613-6810
001047020 0247_ $$2ISSN$$a1613-6829
001047020 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-04076
001047020 037__ $$aFZJ-2025-04076
001047020 082__ $$a620
001047020 1001_ $$0P:(DE-HGF)0$$aFrankenberg, Finn$$b0$$eCorresponding author
001047020 245__ $$aTailoring Composite Microstructure Through Milling for Dry‐Processed Sulfide‐Based Solid‐State Battery Cathodes
001047020 260__ $$aWeinheim$$bWiley-VCH$$c2025
001047020 3367_ $$2DRIVER$$aarticle
001047020 3367_ $$2DataCite$$aOutput Types/Journal article
001047020 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1767959091_9421
001047020 3367_ $$2BibTeX$$aARTICLE
001047020 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001047020 3367_ $$00$$2EndNote$$aJournal Article
001047020 520__ $$aWhile the effects of new solid electrolytes and active materials in cathode composites for solid-state batteries are being intensively researched, little is known about the influence of mechanical processing on the properties of these composites. Here, the influence of mechanical process parameters on the production of $Li_6PS_5Cl$ and $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ composite cathodes applying a planetary ball milling process is systematically investigated. It is shown that the milling process has a significant influence on the microstructure of the composite by affecting the solid electrolyte particle size and the formation of electrolyte-active material aggregates. The combination of experimental results with discrete element simulations shows that changes in microstructure with increasing energy input result in an increase in the density of heterocontacts, which improves the electrochemical performance. However, if the energy input is too high, a decrease in the crystallite size of $Li_6PS_5Cl$ and an increase in strain in $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ have a negative impact on the electrochemical performance. Subsequent dry film production of the pre-milled composites reveals that a non-optimized composite can be partially compensated by the high shear stresses acting during dry film production. Overall, the paramount importance of precisely controlling the milling process for the production of cathode composites is demonstrated.
001047020 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001047020 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001047020 7001_ $$0P:(DE-HGF)0$$aHeck, Carina A.$$b1
001047020 7001_ $$0P:(DE-HGF)0$$aKissel, Maximilian$$b2
001047020 7001_ $$0P:(DE-Juel1)199741$$aLange, Martin Alexander$$b3
001047020 7001_ $$0P:(DE-HGF)0$$aFaka, Vasiliki$$b4
001047020 7001_ $$0P:(DE-HGF)0$$aDiener, Alexander$$b5
001047020 7001_ $$0P:(DE-HGF)0$$aHaase, Philipp$$b6
001047020 7001_ $$0P:(DE-HGF)0$$aMichalowski, Peter$$b7
001047020 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang G.$$b8
001047020 7001_ $$0P:(DE-HGF)0$$aJanek, Jürgen$$b9
001047020 7001_ $$0P:(DE-HGF)0$$aKwade, Arno$$b10
001047020 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202507279$$gp. e07279$$n41$$pe07279$$tSmall$$v21$$x1613-6810$$y2025
001047020 8564_ $$uhttps://juser.fz-juelich.de/record/1047020/files/Small%20-%202025%20-%20Frankenberg%20-%20Tailoring%20Composite%20Microstructure%20Through%20Milling%20for%20Dry%E2%80%90Processed%20Sulfide%E2%80%90Based%20Solid%E2%80%90State.pdf$$yOpenAccess
001047020 909CO $$ooai:juser.fz-juelich.de:1047020$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001047020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)199741$$aForschungszentrum Jülich$$b3$$kFZJ
001047020 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b8$$kFZJ
001047020 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001047020 9141_ $$y2025
001047020 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
001047020 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
001047020 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001047020 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2022$$d2024-12-27
001047020 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-27$$wger
001047020 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
001047020 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL : 2022$$d2024-12-27
001047020 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
001047020 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001047020 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27
001047020 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
001047020 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
001047020 920__ $$lyes
001047020 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001047020 980__ $$ajournal
001047020 980__ $$aVDB
001047020 980__ $$aUNRESTRICTED
001047020 980__ $$aI:(DE-Juel1)IMD-4-20141217
001047020 9801_ $$aFullTexts