001     1047020
005     20260109202555.0
024 7 _ |a 10.1002/smll.202507279
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-04076
|2 datacite_doi
037 _ _ |a FZJ-2025-04076
082 _ _ |a 620
100 1 _ |a Frankenberg, Finn
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Tailoring Composite Microstructure Through Milling for Dry‐Processed Sulfide‐Based Solid‐State Battery Cathodes
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1767959091_9421
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a While the effects of new solid electrolytes and active materials in cathode composites for solid-state batteries are being intensively researched, little is known about the influence of mechanical processing on the properties of these composites. Here, the influence of mechanical process parameters on the production of $Li_6PS_5Cl$ and $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ composite cathodes applying a planetary ball milling process is systematically investigated. It is shown that the milling process has a significant influence on the microstructure of the composite by affecting the solid electrolyte particle size and the formation of electrolyte-active material aggregates. The combination of experimental results with discrete element simulations shows that changes in microstructure with increasing energy input result in an increase in the density of heterocontacts, which improves the electrochemical performance. However, if the energy input is too high, a decrease in the crystallite size of $Li_6PS_5Cl$ and an increase in strain in $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ have a negative impact on the electrochemical performance. Subsequent dry film production of the pre-milled composites reveals that a non-optimized composite can be partially compensated by the high shear stresses acting during dry film production. Overall, the paramount importance of precisely controlling the milling process for the production of cathode composites is demonstrated.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Heck, Carina A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kissel, Maximilian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lange, Martin Alexander
|0 P:(DE-Juel1)199741
|b 3
700 1 _ |a Faka, Vasiliki
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Diener, Alexander
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Haase, Philipp
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Michalowski, Peter
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zeier, Wolfgang G.
|0 P:(DE-Juel1)184735
|b 8
700 1 _ |a Janek, Jürgen
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kwade, Arno
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1002/smll.202507279
|g p. e07279
|0 PERI:(DE-600)2168935-0
|n 41
|p e07279
|t Small
|v 21
|y 2025
|x 1613-6810
856 4 _ |u https://juser.fz-juelich.de/record/1047020/files/Small%20-%202025%20-%20Frankenberg%20-%20Tailoring%20Composite%20Microstructure%20Through%20Milling%20for%20Dry%E2%80%90Processed%20Sulfide%E2%80%90Based%20Solid%E2%80%90State.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1047020
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)199741
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)184735
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2022
|d 2024-12-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IMD-4-20141217
|k IMD-4
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IMD-4-20141217
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21